670 research outputs found

    An Effective Hybrid Approach Based on Machine Learning Techniques for Auto-Translation: Japanese to English

    Get PDF
    In recent years machine learning techniques have been able to perform tasks previously thought impossible or impractical such as image classification and natural language translation, as such this allows for the automation of tasks previously thought only possible by humans. This research work aims to test a naïve post processing grammar correction method using a Long Short Term Memory neural network to rearrange translated sentences from Subject Object Verb to Subject Verb Object. Here machine learning based techniques are used to successfully translate works in an automated fashion rather than manually and post processing translations to increase sentiment and grammar accuracy. The implementation of the proposed methodology uses a bounding box object detection model, optical character recognition model and a natural language processing model to fully translate manga without human intervention. The grammar correction experimentation tries to fix a common problem when machines translate between two natural languages that use different ordering, in this case from Japanese Subject Object Verb to English Subject Verb Object. For this experimentation 2 sequence to sequence Long Short Term Memory neural networks were developed, a character level and a word level model using word embedding to reorder English sentences from Subject Object Verb to Subject Verb Object. The results showed that the methodology works in practice and can automate the translation process successfully

    Predicting the Standard and Deviant Patterns In EEG Signals Based On Deep Learning Model

    Get PDF
    In the recent years, there has been a significant growth in the area of brain computer interference. The main aim of such area is to read the brain activities, formulate a specific/desired output and power a specific approach using such output. Electroencephalography (EEG) may provide an insight into the analysis procedure of the human behavior and the level of the attention. Using the deep learning based neural network has a great success in different applications recently,such as making a decision, classifying a pattern and predicting an outcome by learning from a set of data and build the right weight matrices to represent the prediction outcome or the learning patterns. This research work proposes a novel model based on long short-term memory network to predict the standard and the deviant cases within EEG data sets. The EEG signals are acquired utilizing all the 128 electrodes that represent the 128 channels from infants aged between 5 and 7 months. Statistical approaches, principal component analysis (PCA) and autoregressive (AR) power spectral density estimate have been employed to extract the features from the EEG data sets. The proposed deep learning based model has shown great robustness dealing with different types of features extracted from the processed data sets. Very promising results have been achieved in predicting the standard and deviant cases. The standard case was presented with frequent, repetitive stimulus and the deviant case was presented with infrequent sounds

    Variance Ranking for Multi-Classed Imbalanced Datasets: A Case Study of One-Versus-All

    Get PDF
    Imbalanced classes in multi-classed datasets is one of the most salient hindrances to the accuracy and dependable results of predictive modeling. In predictions, there are always majority and minority classes, and in most cases it is difficult to capture the members of item belonging to the minority classes. This anomaly is traceable to the designs of the predictive algorithms because most algorithms do not factor in the unequal numbers of classes into their designs and implementations. The accuracy of most modeling processes is subjective to the ever-present consequences of the imbalanced classes. This paper employs the variance ranking technique to deal with the real-world class imbalance problem. We augmented this technique using one-versus-all re-coding of the multi-classed datasets. The proof-of-concept experimentation shows that our technique performs better when compared with the previous work done on capturing small class members in multi-classed datasets

    Defeating the Credit Card Scams Through Machine Learning Algorithms

    Get PDF
    Credit card fraud is a significant problem that is not going to go away. It is a growing problem and surged during the Covid-19 pandemic since more transactions are done without cash in hand now. Credit card frauds are complicated to distinguish as the characteristics of legitimate and fraudulent transactions are very similar. The performance evaluation of various Machine Learning (ML)-based credit card fraud recognition schemes are significantly pretentious due to data processing, including collecting variables and corresponding ML mechanism being used. One possible way to counter this problem is to apply ML algorithms such as Support Vector Machine (SVM), K nearest neighbor (KNN), Naive Bayes, and logistic regression. This research work aims to compare the ML as mentioned earlier models and its impact on credit card scam detection, especially in situations with imbalanced datasets. Moreover, we have proposed state of the art data balancing algorithm to solve data unbalancing problems in such situations. Our experiments show that the logistic regression has an accuracy of 99.91%, and naive bays have an accuracy of 97.65%. K nearest neighbor has an accuracy is 99.92%, support vector machine has an accuracy of 99.95%. The precision and accuracy comparison of our proposed approach shows that our model is state of the art

    Context-Aware Driver Distraction Severity Classification using LSTM Network

    Get PDF
    Advanced Driving Assistance Systems (ADAS) has been a critical component in vehicles and vital to the safety of vehicle drivers and public road transportation systems. In this paper, we present a deep learning technique that classifies drivers’ distraction behaviour using three contextual awareness parameters: speed, manoeuver and event type. Using a video coding taxonomy, we study drivers’ distractions based on events information from Regions of Interest (RoI) such as hand gestures, facial orientation and eye gaze estimation. Furthermore, a novel probabilistic (Bayesian) model based on the Long shortterm memory (LSTM) network is developed for classifying driver’s distraction severity. This paper also proposes the use of frame-based contextual data from the multi-view TeleFOT naturalistic driving study (NDS) data monitoring to classify the severity of driver distractions. Our proposed methodology entails recurrent deep neural network layers trained to predict driver distraction severity from time series data

    Elemental Contamination in Indoor Floor Dust and Its Correlation with PAHs, Fungi, and Gram plus /-Bacteria

    Get PDF
    In this study, we performed elemental analysis for floor dust samples collected in Jordanian microenvironments (dwellings and educational building). We performed intercorrelation and cluster analysis between the elemental, polyaromatic hydrocarbon (PAH), and microorganism concentrations. In general, the educational building workshops had the highest elemental contamination. The age of the dwelling and its occupancy played a role on the elemental contamination level: older and more occupied dwellings had greater contamination. The elemental contamination at a dwelling entrance was observed to be higher than in the living room. We found exceptionally high concentrations for Fe and Mn in the educational workshop and additionally, Hg, Cr, and Pb concentrations exceeded the limits set by the Canadian Council of Ministers of the Environment. According to the cluster analysis, we found three major groups based on location and contamination. According to the enrichment factor (EF) assessment, Al, Co, Mn, Ti, and Ba had EF 40 (i.e., extremely enriched). In contrast, Ca and P were geogenically enriched. Furthermore, significant Spearman correlations indicated nine subgroups of elemental contamination combined with PAHs and microbes.Peer reviewe

    Elemental Contamination in Indoor Floor Dust and Its Correlation with PAHs, Fungi, and Gram+/− Bacteria

    Get PDF
    In this study, we performed elemental analysis for floor dust samples collected in Jordanian microenvironments (dwellings and educational building). We performed intercorrelation and cluster analysis between the elemental, polyaromatic hydrocarbon (PAH), and microorganism concentrations. In general, the educational building workshops had the highest elemental contamination. The age of the dwelling and its occupancy played a role on the elemental contamination level: older and more occupied dwellingshad greater contamination. The elemental contamination at a dwelling entrance was observed to be higher than in the living room. We found exceptionally high concentrations for Fe and Mn in the educational workshop and additionally, Hg, Cr, and Pb concentrations exceeded the limits set by the Canadian Council of Ministers of the Environment. According to the cluster analysis, we found three major groups based on location and contamination. According to the enrichment factor (EF) assessment, Al, Co, Mn, Ti, and Ba had EF 40 (i.e., extremely enriched). In contrast, Ca and P were geogenically enriched. Furthermore, significant Spearman correlations indicated nine subgroups of elemental contamination combined with PAHs and microbes

    Elemental Contamination in Indoor Floor Dust and Its Correlation with PAHs, Fungi, and Gram+/− Bacteria

    Get PDF
    In this study, we performed elemental analysis for floor dust samples collected in Jordanian microenvironments (dwellings and educational building). We performed intercorrelation and cluster analysis between the elemental, polyaromatic hydrocarbon (PAH), and microorganism concentrations. In general, the educational building workshops had the highest elemental contamination. The age of the dwelling and its occupancy played a role on the elemental contamination level: older and more occupied dwellingshad greater contamination. The elemental contamination at a dwelling entrance was observed to be higher than in the living room. We found exceptionally high concentrations for Fe and Mn in the educational workshop and additionally, Hg, Cr, and Pb concentrations exceeded the limits set by the Canadian Council of Ministers of the Environment. According to the cluster analysis, we found three major groups based on location and contamination. According to the enrichment factor (EF) assessment, Al, Co, Mn, Ti, and Ba had EF 40 (i.e., extremely enriched). In contrast, Ca and P were geogenically enriched. Furthermore, significant Spearman correlations indicated nine subgroups of elemental contamination combined with PAHs and microbes

    A Machine-Learning-Based Approach to Predict the Health Impacts of Commuting in Large Cities: Case Study of London

    Get PDF
    The daily commute represents a source of chronic stress that is positively correlated with physiological consequences, including increased blood pressure, heart rate, fatigue, and other negative mental and physical health effects. The purpose of this research is to investigate and predict the physiological effects of commuting in Greater London on the human body based on machine-learning approaches. For each participant, the data were collected for five consecutive working days, before and after the commute, using non-invasive wearable biosensor technology. Multimodal behaviour, analysis and synthesis are the subjects of major efforts in computing field to realise the successful human–human and human–agent interactions, especially for developing future intuitive technologies. Current analysis approaches still focus on individuals, while we are considering methodologies addressing groups as a whole. This research paper employs a pool of machine-learning approaches to predict and analyse the effect of commuting objectively. Comprehensive experimentation has been carried out to choose the best algorithmic structure that suit the problem in question. The results from this study suggest that whether the commuting period was short or long, all objective bio-signals (heat rate and blood pressure) were higher post-commute than pre-commute. In addition, the results match both the subjective evaluation obtained from the Positive and Negative Affect Schedule and the proposed objective evaluation of this study in relation to the correlation between the effect of commuting on bio-signals. Our findings provide further support for shorter commutes and using the healthier or active modes of transportation

    An Effective Knowledge-Based Modeling Approach towards a “Smart-School Care Coordination System” for Children and Young People with Special Educational Needs and Disabilities

    Get PDF
    There is a significant need for a computer-aided modeling, effective information analysis and ontology knowledge base models to support both special needs children and care providers. As this research work correlated to the symmetry scope, it proposes an innovative generic smart knowledge-based “School Care Coordination System” (SCCS), which is established on a novel holistic six-layered data management model. The development of the Smart-SCCS adopts a methodology of ontology engineering to transform the given theoretical unstructured special educational needs and disabilities (SEND) code of practice into a comprehensive knowledge representation and reasoning system. The intended purpose is to deliver a system that can coordinate and bring together education, health and social care services into a single application to meet the needs of children and young people (CYP) with SEND. Moreover, it enables coordination, integration and monitoring of education, health and social care activities between different actors (formal, informal and CYP in the education sector) involved in the school care process network to provide personalized care interventions based on a predefined care plan. The developed ontology knowledge-based model has been proven efficient and solved the enormous difficulties faced by schools and local authorities on a daily basis. It enabled the coordination of care and integration of information for CYP from different departments in health, social care and education. The developed model has received significant attention with great feedback from all the schools and the local authorities involved, showing its efficiency and robustness
    corecore