30 research outputs found

    Floristic Diversity And Dynamics In The Farasan Islands, Red Sea, Saudi Arabia

    Get PDF
    The current work establishes the first intensive ecological study of Farasan Archipelago concerning the mechanisms and processes of vegetation diversity and composition. The floristic survey was carried out on 20 islands which vary in areas from few square meters to about 381 km2 to analyze the floristic diversity and composition. The analysis identified a total of 191 species belonging to 129 genera and 53 families, with 38 species belonging to the Monocotyledoneae and 153 species to the Dicotyledoneae

    Botanical Insecticides and their Potential as Anti-Insect/Pests: Are they Successful against Insects and Pests?

    Get PDF
    In low-income countries, subsistence and transitional farms frequently use botanical insecticides. The shortage or high cost of industrial pesticides also prompts their use. Botanical insecticides are also prescribed by agricultural and development programs and certain development organizations. However, since insecticidal proof of their effectiveness and protection might not be sufficient or usable, this may be called into question. While insecticidal botanicals have been extensively studied, there has yet to be a fusion that focuses especially on the domestic synthesis of biopesticides that work infield and storage effectively. In this chapter, we look at the effectiveness of botanicals (neem, garlic, and essential oil) that are used as insecticides. In addition, this chapter also focuses on research carried out on the use of these essential oils as insecticides. Processes that use variable amounts of ingredients and concentrations and ratios of active ingredients can have varying impacts on the efficacy of plant-based biological insecticides. Finally, using home-made insecticides would reduce the losses that occur during food production and enable us to use environment-friendly pest management methods

    A Combined Use of Rhizobacteria and Moringa Leaf Extract Mitigates the Adverse Effects of Drought Stress in Wheat (Triticum aestivum L.)

    Get PDF
    Less nutrient availability and drought stress are some serious concerns of agriculture. Both biotic and abiotic stress factors have the potential to limit crop productivity. However, several organic extracts obtained from moringa leaves may induce immunity in plants under nutritional and drought stress for increasing their survival. Additionally, some rhizobacterial strains have the ability to enhance root growth for better nutrient and water uptake in stress conditions. To cover the knowledge gap on the interactive effects of beneficial rhizobacteria and moringa leaf extracts (MLEs), this study was conducted. The aim of this experimental study was to investigate the effectiveness of sole and combined use of rhizobacteria and MLEs against nutritional and drought stress in wheat. Nitrogen-fixing bacteria Pseudomonas aeruginosa (Pa) (10(8) CFU ml(-1)) was inoculated to wheat plants with and without foliar-applied MLEs at two different concentrations (MLE 1 = 1:15 v/v and MLE 2 = 1:30 v/v) twice at 25 and 35 days after seed sowing (50 ml per plant) after the establishment of drought stress. Results revealed that Pa + MLE 2 significantly increased fresh weight (FW), dry weight (DW), lengths of roots and shoot and photosynthetic contents of wheat. A significant enhancement in total soluble sugars, total soluble proteins, calcium, potassium, phosphate, and nitrate contents validated the efficacious effect of Pa + MLE 2 over control-treated plants. Significant decrease in sodium, proline, glycine betaine, electrolyte leakage, malondialdehyde, hydrogen peroxide, superoxide dismutase (SOD), and peroxide (POD) concentrations in wheat cultivated under drought stress conditions also represents the imperative role of Pa + MLE 2 over control. In conclusion, Pa + MLE 2 can alleviate nutritional stress and drought effects in wheat. More research in this field is required to proclaim Pa + MLE 2 as the most effective amendment against drought stress in distinct agroecological zones, different soil types, and contrasting wheat cultivars worldwide.Peer reviewe

    Botanical Insecticides Are a Non-Toxic Alternative to Conventional Pesticides in the Control of Insects and Pests

    Get PDF
    Insect control for crops is one of the most critical global concerns. Pest management is an economic and ecological problem worldwide due to the human and environmental risks raised by most synthetic pesticide products. Botanical insecticides have resurfaced in popularity due to their low cost and low environmental impact, rather than their negative effects on human health. Botanical insecticides destroy only the insects they are meant to kill, leaving no residue on food or in the environment. Botanicals have long been used to combat pests. The compounds have many environmental advantages. However, as opposed to other bio-control pests and pathogens, their use was minimal during the twentieth century. In developing countries, botanical insecticides are well adapted for use in organic food production. Nonetheless, they may play a far bigger role in developed countries’ food production and post-harvest food protection. Consequently, the current chapter briefly addresses botanicals with active ingredients with insecticidal, antifeedant, or repellent properties

    Human health risk assessments of trace metals on the clam Corbicula javanica in a tropical river in Peninsular Malaysia

    Get PDF
    This study aimed to analyse ten trace metal concentrations in the edible part of the freshwater clam Corbicula javanica and to provide a critical assessment of the potential risks to human health through consumption of this clam as food based on well-established indices and food safety guidelines. The clams were captured from a pristine original site and transplanted to other sites with different environmental qualities. The trace metal levels in the edible total soft tissue (TST) of the clam were below those of the food safety guidelines referred to except for Pb, which exceeded the permissible limit set by the European Commission (2006) and the US Food and Drug Administration/ Center for Food Safety and Applied Nutrition); Interstate Shellfish Sanitation Conference. (USFDA/CFSAN; ISSC) (2007). The estimated daily intake (EDI) values of the clam were found to be lower than the oral reference dose and the calculated target hazard quotient (THQ) and total THQ were found to be less than 1. Therefore, in conclusion, the human health risk for consumption of TST of C. javanica at both average and high-level were insignificant regardless of the environment it was exposed to

    Do Spatially Structured Soil Variables Influence the Plant Diversity in Tabuk Arid Region, Saudi Arabia?

    No full text
    Plant diversity is affected by spatial variables as well as soil physical and chemical variables. In this study, plant species and soil variables were investigated in five sites of Tabuk Province (Saudi Arabia), namely Aldesah, Alzetah, Alawz, Harra and Sharma, to understand if the spatially structured soil variables (pH, electric conductivity (EC), soil texture, calcium, potassium, phosphorus, phosphate, total organic matter (OM), bicarbonate and sodium) influence the plant diversity. A total of 163 plant species belong to 41 families and 124 genera were reported from the 5 sites. Diversity indices including the species richness (alpha), evenness, Brillouin, Menhinick, Margalef, equitability and estimated Chao-1 were significantly different among the studied sites with pronounced high values in Sharma and Aldesah. The highest value of beta diversity was reported in Aldesah (0.253) followed by Sharma (0.171). According to the principal coordinates of neighbourhood matrix (PCNM) analysis, 11 positive spatial vectors (variables) were found. However, after running the forward selection procedures (using 2 stopping criteria), only 3 spatial vectors were retained (PCNM 1 (adj–R2 = 0.043, F = 5.201, p = 0.004), PCNM 2 (adj–R2 = 0.027, F = 3.97, p = 0.006) and PCNM 3 (adj–R2 = 0.019, F = 3.36, p = 0.007)). The linear models between the selected spatial variables (PCNM vectors) and soil variables were produced to investigate their spatial structure. In the first model, the first PCNM 1 axis showed significant relationship with pH and potassium (adj–R2 = 0.175, p = 0.046). In the second model, the second PCNM 2 axis had a significant relationship with OM and sodium (adj–R2 = 0.561, p < 0.001). Lastly, sodium was the only factor significantly correlated with the third PCNM 3 axis (adj–R2 = 0.365, p = 0.002). In conclusion, the spatially structured variables of soil did not show strong influence on plant diversity except pH and potassium, which were correlated with PCNM 1, OM and sodium, which were correlated with PCNM 2, and sodium, which was correlated with PCNM 3

    Influence of soil physical and chemical variables on species composition and richness of plants in the arid region of Tabuk, Saudi Arabia

    No full text
    The present study aims to investigate the effect of soil physical and chemical variables on the species richness and the floristic composition in four sites (Alwaz, Alqan, Sharma and Zetah) of Tabuk region in the Northwestern part of Arabian Peninsula. Only organic matter (OM), pH and calcium (Ca) showed significant differences (P < 0.05) amongst the four studied sites. Only magnesium and sodium were selected in the forward regression model and showed to be strong drivers of species richness of plants in Tabuk region (Adj-R2 = 0.438, F2,13 = 6.85, P = 0.009). The multivariate analysis of canonical correspondence analysis (CCA ) was applied to reveal the effect of the physical and chemical variables on the species composition of the plants. The CCA classifies the plant species into three groups based on their preference to the environmental variables. The first group of plant species (Group 1) is characterised by positive preference to the chloride (Cl) and negative relationship with OM and pH. The second group (Group 2) is positively correlated with most of the soil variables such as OM, calcium (Ca), potassium (K), bicarbonate (HCO3), electrical conductivity (EC), sulphate (SO4) and sodium (Na). The third group (Group 3) has positive relationship with carbonate (CO3) and negative relationship with EC and magnesium (Mg). The chloride, sodium, sulphate, EC and carbonate are the main environmental factors influencing the plant species composition in Tabuk region. The cluster analysis based on the Euclidian measure shows that Alqan and Zetah have closer species composition compared to Sharma

    Ecological-health risk assessments of heavy metals (Cu, Pb, and Zn) in aquatic sediments from the ASEAN-5 emerging developing countries: a review and synthesis

    No full text
    The ASEAN-5 countries (Malaysia, Indonesia, Thailand, Philippines, and Vietnam) of the Association of Southeast Asian Nations as a group is an ever-increasing major economy developmental hub in Asia besides having wealthy natural resources. However, heavy metal (HM) pollution in the region is of increasing environmental and public concern. This study aimed to review and compile the concentrations of Cu, Pb, and Zn in the aquatic sediments of the ASEAN-5 countries published in the literature from 1981 to February 2021. The mean values of Cu, Pb, and Zn in aquatic sediments were elevated and localized in high human activity sites and compared to the earth’s upper continental crust and reference values. Based on 176 reports from 113 publications, the ranges of concentrations (mg/kg dry weight) were 0.09–3080 for Cu, 0.37–4950 for Zn, and 0.07–2666 for Pb. The ecological risk (ER) values ranged from 0.02–1077 for Cu, 0.01–95.2 for Zn, and 0.02–784 for Pb. All reports (100%) showed the Zn ER values were categorized as being between ‘low potential ecological risk’ and ‘considerable potential ecological risk’. Almost all Cu ER values (97.7%) also showed similar ranges of the above two risk categories except for a few reports. The highest Cu level (3080 mg/kg dry weight) was reported from a mine-tailing spill in Marinduque Island of the Philippines with ‘very high ecological risk’. In addition, drainage sediments in the western part of Peninsular Malaysia were categorized as Cu ’high potential ecological risk’. Almost all reports (96%) showed Pb ER values categorized as between ‘low potential ecological risk’ and ‘moderate potential ecological risk’ except for a few reports. Six reports showed Pb ER values of ‘considerable potential ecological risk’, while one report from Semarang (Indonesia) showed Pb ER of ‘very high ecological risk’ (Pb level of 2666 mg/kg dry weight). For the ingestion and dermal contact pathways for sediments from the ASEAN-5 countries, all non-carcinogenic risk (NCR) values (HI values 1.0) for Cu, Pb, and Zn reflected no NCR. The ER and human health risk assessment of Cu, Pb, and Zn were compared in an integrative and accurate manner after we reassessed the HM data mentioned in the literature. The synthesis carried out in this review provided the basis for us to consider Cu, Pb, and Zn as being of localized elevated levels. This provided evidence for the ASEAN-5 group of countries to be considered as being a new socio-economic corridor. Beyond any reasonable doubt, an ever-increasing anthropogenic input of HMs is to be expected to a certain degree. We believe that this paper provides the most fundamental useful baseline data for the future management and sustainable development of the aquatic ecosystems in the region. Lastly, we claim that this review is currently the most up-to-date review on this topic in the literature

    Copper and Zinc Levels in Commercial Marine Fish from Setiu, East Coast of Peninsular Malaysia

    No full text
    Potentially toxic metals (PTMs) in edible marine fish have been widely reported from at least 15 different regions or countries in the literature. This evidently demonstrates the importance of monitoring the PTMs in fish fillets from a human health risk (HHR) point of view. This study aims to assess the HHR of Cu and Zn in 19 species of marine fish from popular marine fish loading sites at Setiu in Terengganu, on the east coast of Peninsular Malaysia, collected between August 2016 and February 2017. With overall ranges of concentrations (mg/kg dry weight) of Cu (1.50&ndash;7.83), and Zn (24.1&ndash;80.5), the 19 species of marine fishes from Setiu are good sources of these essential elements because they are below the maximum permissible limits set by seafood safety guidelines. The target hazard quotient values of Cu and Zn were lower than one, indicating non-carcinogenic risks of Cu and Zn in fish consumption. It was also found that the calculated values of the estimated weekly intake were below the established provisional tolerable weekly intake of Cu and Zn. It can be concluded that the consumption of fish from Setiu would not pose adverse effects from the PTMs to consumers. Nonetheless, continuous monitoring is necessary to ensure the safety of consumers who rely heavily on marine fish in Setiu coastal waters
    corecore