64 research outputs found
Following drug degradation and consequent taste deterioration of an oral reconstituted paediatric suspension during dosing interval via electronic tongue
BackgroundThe taste of oral liquid dosage forms is a crucial factor that impacts pediatric patient compliance. Taste of suspensions can be typically evaluated by human volunteers. Recently, the electronic tongue (ET) has been proven as an emerging tool that could be useful to follow up various formulations’ properties like taste and composition. This study aimed to evaluate the potential use of ET in assessing the taste deterioration of reconstituted oral suspensions and compare the results obtained with the typical in vivo panel taste method. MethodsFour commercially available brands of amoxicillin/ clavulanic acid suspensions (one brand and three generic formulations) were reconstituted and stored in refrigerator to assess their taste on a daily basis. The taste of these products was assessed using Alpha-Astree ET and the obtained results were compared with those obtained from an in vivo panel taste assessment using a hedonic panel test (the 5-point hedonic scale). ResultsAll evaluated suspensions exhibited similar trends. ET and in vivo analysis indicated low taste scores for all evaluated suspensions immediately after reconstitution, possibly due to the incomplete dissolution of sucrose. The scores for all formulations were higher on day 2, followed by a steady state for the next two days. After that, a significant decay in the scores was observed in the fifth day for all evaluated suspensions. ET results were in excellent agreement with the results obtained via in vivo panel test method. ConclusionThe ET seems to be promising for testing the taste of pharmaceutical liquid preparations and evaluate possible deterioration upon storage or after reconstitution. It may provide a platform to avoid the involvement of pediatric volunteers in clinical evaluation and can be employed as a quality control tool during manufacturing
Interstellar Mapping and Acceleration Probe (IMAP): A New NASA Mission
The Interstellar Mapping and Acceleration Probe (IMAP) is a revolutionary mission that simultaneously investigates two of the most important overarching issues in Heliophysics today: the acceleration of energetic particles and interaction of the solar wind with the local interstellar medium. While seemingly disparate, these are intimately coupled because particles accelerated in the inner heliosphere play critical roles in the outer heliospheric interaction. Selected by NASA in 2018, IMAP is planned to launch in 2024. The IMAP spacecraft is a simple sun-pointed spinner in orbit about the Sun-Earth L1 point. IMAP’s ten instruments provide a complete and synergistic set of observations to simultaneously dissect the particle injection and acceleration processes at 1 AU while remotely probing the global heliospheric interaction and its response to particle populations generated by these processes. In situ at 1 AU, IMAP provides detailed observations of solar wind electrons and ions; suprathermal, pickup, and energetic ions; and the interplanetary magnetic field. For the outer heliosphere interaction, IMAP provides advanced global observations of the remote plasma and energetic ions over a broad energy range via energetic neutral atom imaging, and precise observations of interstellar neutral atoms penetrating the heliosphere. Complementary observations of interstellar dust and the ultraviolet glow of interstellar neutrals further deepen the physical understanding from IMAP. IMAP also continuously broadcasts vital real-time space weather observations. Finally, IMAP engages the broader Heliophysics community through a variety of innovative opportunities. This paper summarizes the IMAP mission at the start of Phase A development
Role of the nasal septal cartilage in midfacial development
Thesis (Ph.D.)--University of Washington, 2012
Associations of different immune checkpoints-expressing CD4 + Treg/ T cell subsets with disease-free survival in colorectal cancer patients
There are different subsets of T regulatory cells (Tregs), orchestrating critical roles in the regulation of anti-tumor immunity in colorectal cancer (CRC). In this study, we report that a high frequency of circulating CD4+FoxP3+ Tregs was associated with poorer disease-free survival (DFS), while their higher frequencies in tumor-infiltrating CD4+ Tregs was associated with better DFS. We further investigated such associations with four Tregs/T cells expressing or lacking FoxP3 and Helios (FoxP3±Helios±). For the first time, we report that a high frequency of circulating CD4+FoxP3+Helios+ Tregs was associated with poorer DFS, while a high frequency of tumor-infiltrating CD4+FoxP3−Helios− T cells was associated with poorer DFS. In the four FoxP3±Helios± T cell subsets expressing any of the immune checkpoints (ICs) investigated, we found that a high frequency of CD4+FoxP3+Helios−PD-1+ Tregs in circulation was associated with worse DFS. We also found that high frequencies of FoxP3+Helios+CTLA-4+ Tregs, FoxP3+Helios−CTLA-4+ Tregs, and FoxP3−Helios+CTLA-4+ CD4+ T cells in circulation were associated with worse DFS. In contrast, high frequencies of CD4+TIM-3+ T cells, FoxP3+Helios+TIM-3+ Tregs, and FoxP3−Helios+TIM-3+ CD4+ T cells in circulation were associated with longer DFS. Our data show that certain CD4+ Treg/T cell subsets could serve as independent predictive biomarkers in CRC patients. Identification of the exact subpopulations contributing to clinical outcomes is critical for prognoses and therapeutic targeting
Associations of complete blood count parameters with disease-free survival in right- and left-sided colorectal cancer patients.
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. Some complete blood count (CBC) parameters are found to be associated with CRC prognosis. In this study, ninety-seven pretreated CRC patients were included, and the patients were divided into two groups: left-sided and right-sided, depending on the anatomical location of the tumor. Based on clinicopathologic features including tumor budding, disease stages, and tumor anatomical location, levels of CBC parameters were compared, and disease-free survivals (DFS) were determined. There were differences between patients with different tumor budding scores for only three parameters, including red cell distribution width (RDW), numbers of platelets, and mean platelet volume (MPV). Furthermore, numbers of WBCs, monocytes, and MPV in CRC patients with early disease stages were higher than those with advanced stages. However, levels of eosinophil in CRC patients with advanced stages were higher than those with early stages. Depending on the tumor anatomical location, we observed that numbers of red blood cells (RBCs), hemoglobin (Hgb), and hematocrit (Hct) in CRC patients with left-sided tumors were higher than those with right-sided tumors. We found that low levels of MPV were associated with shorter DFS. However, high levels of eosinophils were associated with shorter DFS in all CRC patients. When patients were divided based on the tumor anatomical location, higher levels of MPV, MCHC, and Hgb were associated with better DFS in the left-sided but not right-sided CRC patients. However, left-sided, but not right-sided, CRC patients with high levels of eosinophil and RDW had shorter DFS. Furthermore, right-sided, but not left-sided, CRC patients with high levels of platelets tended to have a shorter DFS. Our data show that MPV and eosinophils could serve as potential prognostic biomarkers in pre-treatment CRC patients, regardless of the tumor anatomical location. Additionally, lower levels of MPV, MCHC, and Hgb, and high levels of eosinophils and RDW could be negative predictive biomarkers in left-sided CRC patients
- …