20 research outputs found

    Monomeric C-Reactive Protein Localized in the Cerebral Tissue of Damaged Vascular Brain Regions Is Associated With Neuro-Inflammation and Neurodegeneration-An Immunohistochemical Study

    Get PDF
    Monomeric C-reactive protein (mCRP) is now accepted as having a key role in modulating inflammation and in particular, has been strongly associated with atherosclerotic arterial plaque progression and instability and neuroinflammation after stroke where a build-up of the mCRP protein within the brain parenchyma appears to be connected to vascular damage, neurodegenerative pathophysiology and possibly Alzheimer's Disease (AD) and dementia. Here, using immunohistochemical analysis, we wanted to confirm mCRP localization and overall distribution within a cohort of AD patients showing evidence of previous infarction and then focus on its co-localization with inflammatory active regions in order to provide further evidence of its functional and direct impact. We showed that mCRP was particularly seen in large amounts within brain vessels of all sizes and that the immediate micro-environment surrounding these had become laden with mCRP positive cells and extra cellular matrix. This suggested possible leakage and transport into the local tissue. The mCRP-positive regions were almost always associated with neurodegenerative, damaged tissue as hallmarked by co-positivity with pTau and β-amyloid staining. Where this occurred, cells with the morphology of neurons, macrophages and glia, as well as smaller microvessels became mCRP-positive in regions staining for the inflammatory markers CD68 (macrophage), interleukin-1 beta (IL-1β) and nuclear factor kappa B (NFκB), showing evidence of a perpetuation of inflammation. Positive staining for mCRP was seen even in distant hypothalamic regions. In conclusion, brain injury or inflammatory neurodegenerative processes are strongly associated with mCRP localization within the tissue and given our knowledge of its biological properties, it is likely that this protein plays a direct role in promoting tissue damage and supporting progression of AD after injury.The authors extend their appreciations to the deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number (lFP-2020-36). The authors would also like to thank Deanship of Scientific Research at Majmaah University, Al Majmaah-11952, Saudi Arabia for supporting this work. This work was supported from a grant from the Competitiveness Operational programme 2014–2020: C-reactive protein therapy for stroke-associated dementia: ID_P_37_674, My SMIS code:103432 contract 51/05.09.2016

    The role of hyaluronan in angiogenesis through RHAMM and CD44 receptors in endothelial cells

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Expression of variable viruses as herpes simplex glycoprotein D and varicella zoster gE glycoprotein using a novel plasmid based expression system in insect cell

    Get PDF
    AbstractSeveral prokaryotic and eukaryotic expression systems have been used for in vitro production of viruses’ proteins. However eukaryotic expression system was always the first choice for production of proteins that undergo post-translational modification such as glycosylation. Recombinant baculoviruses have been widely used as safe vectors to express heterologous genes in the culture of insect cells, but the manipulation involved in creating, titrating, and amplifying viral stocks make it time consuming and laborious. Therefore, to facilitate rapid expression in insect cell, a plasmid based expression system was used to express herpes simplex type 1 glycoprotein D (HSV-1 gD) and varicella zoster glycoprotein E (VZV gE). Recombinant plasmids were generated, transfected into insect cells (SF9), and both glycoproteins were expressed 48h post-infection. A protein with approximately molecular weight of 64-kDa and 98-kDa for HSV-1 gD and VZV gE respectively was expressed and confirmed by SDS. Proteins were detected in insect cells cytoplasm and outer membrane by immunofluorescence. The antigenicity and immunoreactivity of each protein were confirmed by immunoblot and ELISA. Results suggest that this system can be an alternative to the traditional baculovirus expression for small scale expression system in insect cells

    Molecular genetic studies in Saudi population; identified variants from GWAS and meta-analysis in stroke

    No full text
    Introduction: Stroke is a multifactorial and heterogeneous disorder, correlates with heritability and considered as one of the major diseases. The prior reports performed the variable models such as genome-wide association studies (GWAS), replication, case-control, cross-sectional and meta-analysis studies and still, we lack diagnostic marker in the global world. There are limited studies were carried out in Saudi population, and we aim to investigate the molecular association of single nucleotide polymorphisms (SNPs) identified through GWAS and meta-analysis studies in stroke patients in the Saudi population. Methods: In this case-control study, we have opted gender equality of 207 cases and 207 controls from the capital city of Saudi Arabia in King Saud University Hospital. The peripheral blood (5 ml) sample will be collected in two different vacutainers, and three mL of the coagulated blood will be used for lipid analysis (biochemical tests) and two mL will be used for DNA analysis (molecular tests). Genomic DNA will be extracted with the collected blood samples, and specific primers will be designed for the opted SNPs (SORT1-rs646218 and OLR1-rs11053646 polymorphisms) and PCR-RFLP will be performed and randomly DNA sequencing will be carried out to cross check the results. Results: The rs646218 and rs11053646 polymorphisms were significantly associated with allele, genotype and dominant models with and without crude odds ratios (OR’s) and Multiple logistic regression analysis (p < 0.05). Correlation between lipid profile and genotypes has confirmed the significant relation between triglycerides and rs646218 and rs1105364 6polymorphisms. However, rs11053646 polymorphism was correlated with HDLC (p = 0.04). Genotypes were examined in both males' vs. males and females' vs. females in cases and control and we concluded that in rs11053646 polymorphisms with male subjects compared between cases and controls found to be associated with dominant model heterozygote genotypes (p < 0.05). Conclusion: The results of the current study confirmed the SORT1 and OLR1 SNPs were associated in the Saudi population. The current results were in the association with the prior study results documented through GWAS and meta-analysis association. However, other ethnic population studies should be performed to rule out in the human hereditary diseases

    Neuroprotective effect of endophytic fungal antioxidant polyphenols on cerebral ischemic stroke-induced Albino rats; memory impairments, brain damage, and upregulation of metabolic proteins

    No full text
    Background: Stroke is one of the leading causes of mortality and disability throughout the world. Recently, antioxidant therapies were attempted to reduce apoptotic cell death in cerebral ischemia animal model. Purpose: To study the neuroprotective properties of polyphenol derived from fungal endophyte analyzed on experimental Albino rat. Methods: Polyphenols producing endophytic fungi was initially isolated from the seeds of Moringa oleifera Lam. The endophytes were cultured in potato dextrose broth and the potent strain Simplicillium sp. ED7 produced maximum phenolic content (86.42 ± 5.3 mg GAE/g) than other fungi. Polyphenols were extracted with solvent and used for the determination of neuroprotective properties. Results: Isoflurane was used to induce stroke in Albino rat and treated polyphenols showed reduced neurological deficits and improved neuroprotective properties. The ischemic Albino rats treated with polyphenols restored memory loss. The increased dosage of polyphenol improved the biosynthesis of more antioxidant enzymes than lower dosages. Central artery occlusion evoked about 2.28-fold increase in reactive oxygen species in brain tissue and the generation of reactive oxygen species was decreased in polyphenol treated animal. Conclusion: Albino rats treated with different doses of polyphenol had decrease ROS amount than sham group. The elevated level of cytochrome revealed mitochondrial damage in stroke induced control Albino rat. After 24 h of reperfusion on Albino rat, upregulation of total p65 and phospho-p65 were determined. The present finding revealed that polyphenl has a neuroprotective property in ischemia and regulate metabolic enzymes and restore brain injury

    The tumor microenvironment as driver of stemness and therapeutic resistance in breast cancer: New challenges and therapeutic opportunities

    No full text
    Background: Breast cancer (BC), the second most common cause of cancer-related deaths, remains a significant threat to the health and wellness of women worldwide. The tumor microenvironment (TME), comprising cellular components, such as cancer-associated fibroblasts (CAFs), immune cells, endothelial cells and adipocytes, and noncellular components such as extracellular matrix (ECM), has been recognized as a critical contributor to the development and progression of BC. The interplay between TME components and cancer cells promotes phenotypic heterogeneity, cell plasticity and cancer cell stemness that impart tumor dormancy, enhanced invasion and metastasis, and the development of therapeutic resistance. While most previous studies have focused on targeting cancer cells with a dismal prognosis, novel therapies targeting stromal components are currently being evaluated in preclinical and clinical studies, and are already showing improved efficacies. As such, they may offer better means to eliminate the disease effectively. Conclusions: In this review, we focus on the evolving concept of the TME as a key player regulating tumor growth, metastasis, stemness, and the development of therapeutic resistance. Despite significant advances over the last decade, several clinical trials focusing on the TME have failed to demonstrate promising effectiveness in cancer patients. To expedite clinical efficacy of TME-directed therapies, a deeper understanding of the TME is of utmost importance. Secondly, the efficacy of TME-directed therapies when used alone or in combination with chemo- or radiotherapy, and the tumor stage needs to be studied. Likewise, identifying molecular signatures and biomarkers indicating the type of TME will help in determining precise TME-directed therapies
    corecore