24 research outputs found

    Synthesis and structural characterization of hexa-μ<sub>2</sub>-chlorido-μ<sub>4</sub>-oxido-tetrakis{[4-(phenylethynyl)pyridine-κN]copper(II)} dichloromethane monosolvate

    Get PDF
    In the crystal structure of the title compound, [Cu4Cl6O(C13H9N)4]·CH2Cl2, the core molecular structure consists of a Cu4 tetrahedron with a central interstitial O atom. Each edge of the Cu4 tetrahedron is bridged by a chlorido ligand. Each copper(II) cation is coordinated to the central O atom, two chlorido ligands and one N atom of the 4-phenylethynylpyridine ligand. In the crystal, the molecules are linked by intermolecular C - H⋯Cl interactions. Furthermore, C - H⋯π and π-π interactions also connect the molecules, forming a three-dimensional network. Hirshfeld surface analysis indicates that the most important contributions for the packing arrangement are from H⋯H and C⋯H/H⋯C interactions.</p

    The Rise of Conjugated Poly-ynes and Poly(Metalla-ynes): From Design Through Synthesis to Structure-Property Relationships and Applications

    Get PDF
    Conjugated poly-ynes and poly(metalla-ynes) constitute an important class of new materials with potential application in various domains of science. The key factors responsible for the diverse usage of these materials is their intriguing and tunable chemical and photo-physical properties. This review highlights fascinating advances made in the field of conjugated organic poly-ynes and poly(metalla-ynes) incorporating group 4-11 metals. This includes several important aspects of conjugated poly-ynes viz. synthetic protocols, bonding, electronic structure, and nature of luminescence, structure-property relationships, diverse applications, and concluding remarks. Furthermore, we delineated the future directions and challenges in this particular area of research

    Synthesis, optical spectroscopy, structural, and DFT studies on dimeric iodo-bridged Copper(I)complexes

    Get PDF
    Three new iodo-bridged copper(I)complexes of the type [CuI(PPh 3 )L] 2 , where L = Ar–≡–C 5 H 4 N, Ar = phenyl (C 1 ), biphenyl (C 2 )and flourenyl (C 3 )have been synthesized via coordination-driven self-assembly processes. Two of Cu(I)complexes, C 2 and C 3 , have been characterized by single-crystal X-ray diffraction studies. The complexes have two molecules of the P-donor ligand and two molecules of the N-donor ligand in trans configurations, supporting the central Cu 2 I 2 unit. Absorption properties of the complexes have been investigated. Extensive DFT calculation has been carried out to delineate the influence of aromatic spacers on the optical properties and the nature of excited states. The ease of synthesis of these Cu(I)dimers and the wide range of ethynylpyridine supporting ligands that can be incorporated highlights the potential for these materials to form polymers by linking through the ethylylpyridine ligands. </p

    Synthesis and structural characterization of hexa-μ<sub>2</sub>-chlorido-μ<sub>4</sub>-oxido-tetrakis{[4-(phenylethynyl)pyridine-κN]copper(II)} dichloromethane monosolvate

    Get PDF
    In the crystal structure of the title compound, [Cu4Cl6O(C13H9N)4]·CH2Cl2, the core molecular structure consists of a Cu4 tetrahedron with a central interstitial O atom. Each edge of the Cu4 tetrahedron is bridged by a chlorido ligand. Each copper(II) cation is coordinated to the central O atom, two chlorido ligands and one N atom of the 4-phenylethynylpyridine ligand. In the crystal, the molecules are linked by intermolecular C - H⋯Cl interactions. Furthermore, C - H⋯π and π-π interactions also connect the molecules, forming a three-dimensional network. Hirshfeld surface analysis indicates that the most important contributions for the packing arrangement are from H⋯H and C⋯H/H⋯C interactions.</p

    Two is Better Than One? Investigating the Effect of Incorporating Re(CO)<sub>3</sub>Cl Side-Chains into Pt(II) Diynes and Polyynes

    Get PDF
    Pt(II) di-ynes and poly-ynes incorporating 5,5’- and 6,6’-disubstituted 2,2’-bipyridines were prepared following conventional Sonogashira and Hagihara dehydrohalogenation reaction protocols. Using Pt(II) dimers and polymers as a rigid-rod backbone, four new hetero-bimetallic compounds incorporating Re(CO)3Cl as a pendant functionality in the 2,2’-bipyridine core were obtained. The new hetero-bimetallic Pt-Re compounds were characterized by analytical and spectroscopic techniques. The solid state structures of a Re(I)-coordinated diterminal alkynyl ligand and a representative model compound were determined by single-crystal X-ray diffraction. Detailed photo-physical characterization of the hetero-bimetallic Pt(II) di-ynes and poly-ynes was carried out. We find that the incorporation of the Re(CO)3Cl pendant functionality in the 2,2’-bipyridine-containing main-chain Pt(II) di-ynes and poly-ynes has a synergistic effect on the optical properties, red shifting the absorption profile and introducing strong long-wavelength absorptions. The Re(I) moiety also introduces strong emission into the monomeric Pt(II) di-yne compounds, whereas this is suppressed in the poly-ynes. The extent of the synergy depends on the topology of the ligands. Computational modelling was performed to compare the energetic stabilities of the positional isomers and to understand the microscopic origin of the major optical absorptions. We find that 5,5’-disubstituted 2,2’-bipyridine systems are better candidates in terms of yield, photophysical properties and stability than their 6,6’-substituted counterparts. Overall, this work provides an additional synthetic route to control the photo-physical properties of metalla-ynes for a variety of optoelectronic applications

    Two is Better Than One? Investigating the Effect of Incorporating Re(CO)<sub>3</sub>Cl Side-Chains into Pt(II) Diynes and Polyynes

    Get PDF
    Pt(II) di-ynes and poly-ynes incorporating 5,5’- and 6,6’-disubstituted 2,2’-bipyridines were prepared following conventional Sonogashira and Hagihara dehydrohalogenation reaction protocols. Using Pt(II) dimers and polymers as a rigid-rod backbone, four new hetero-bimetallic compounds incorporating Re(CO)3Cl as a pendant functionality in the 2,2’-bipyridine core were obtained. The new hetero-bimetallic Pt-Re compounds were characterized by analytical and spectroscopic techniques. The solid state structures of a Re(I)-coordinated diterminal alkynyl ligand and a representative model compound were determined by single-crystal X-ray diffraction. Detailed photo-physical characterization of the hetero-bimetallic Pt(II) di-ynes and poly-ynes was carried out. We find that the incorporation of the Re(CO)3Cl pendant functionality in the 2,2’-bipyridine-containing main-chain Pt(II) di-ynes and poly-ynes has a synergistic effect on the optical properties, red shifting the absorption profile and introducing strong long-wavelength absorptions. The Re(I) moiety also introduces strong emission into the monomeric Pt(II) di-yne compounds, whereas this is suppressed in the poly-ynes. The extent of the synergy depends on the topology of the ligands. Computational modelling was performed to compare the energetic stabilities of the positional isomers and to understand the microscopic origin of the major optical absorptions. We find that 5,5’-disubstituted 2,2’-bipyridine systems are better candidates in terms of yield, photophysical properties and stability than their 6,6’-substituted counterparts. Overall, this work provides an additional synthetic route to control the photo-physical properties of metalla-ynes for a variety of optoelectronic applications

    The impact of the alkyne substitution pattern and metalation on the photo-isomerization of azobenzene-based platinum(II) diynes and polyynes

    Get PDF
    Trimethylsilyl-protected dialkynes incorporating azobenzene linker groups, Me<sub>3</sub>SiCCRCCSiMe<sub>3</sub> (R = azobenzene-3,3′-diyl, azobenzene-4,4′-diyl, 2,5-dioctylazobenzene-4,4′-diyl), and the corresponding terminal dialkynes, HCCRCCH, have been synthesized and characterized. The CuI-catalyzed dehydrohalogenation reaction between <i>trans</i>-[Ph­(Et<sub>3</sub>P)<sub>2</sub>PtCl] and the deprotected dialkynes in a 2:1 ratio in <sup>i</sup>Pr<sub>2</sub>NH/CH<sub>2</sub>Cl<sub>2</sub> gives the platinum­(II) diynes <i>trans</i>-[Ph­(Et<sub>3</sub>P)<sub>2</sub>PtCCRCCPt­(PEt<sub>3</sub>)<sub>2</sub>Ph], while the dehydrohalogenation polycondensation reaction between <i>trans</i>-[(<sup>n</sup>Bu<sub>3</sub>P)<sub>2</sub>PtCl<sub>2</sub>] and the dialkynes in a 1:1 molar ratio under similar reaction conditions affords the platinum­(II) polyynes, [−Pt­(P<sup>n</sup>Bu<sub>3</sub>)<sub>2</sub>–CCRCC−]<sub><i>n</i></sub>. The materials have been characterized spectroscopically, with the diynes also studied using single-crystal X-ray diffraction. The platinum­(II) diynes and polyynes are all soluble in common organic solvents. Optical-absorption measurements show that the compounds incorporating the <i>para</i>-alkynylazobenzene spacers have a higher degree of electronic delocalisation than their <i>meta</i>-alkynylazobenzene counterparts. Reversible photoisomerization in solution was observed spectroscopically for the alkynyl-functionalized azobenzene ligands and, to a lesser extent, for the platinum­(II) complexes. Complementary quantum-chemical modeling was also used to analyze the optical properties and isomerization energetics

    Synthesis, characterization, and optoelectronic properties of phenothiazine-based organic co-poly-ynes

    Get PDF
    We present the synthesis and characterization of seven new organic co-poly-ynes P1-P7 incorporating the phenothiazine (PTZ) motif and evaluate their optoelectronic properties and performance in polymer light-emitting diodes and polymer solar cells (PLEDs/PSCs). The co-poly-ynes were obtained in moderate to high yields via Sonogashira coupling reactions and characterized using analytical, spectroscopic and electrochemical techniques and complementary quantum-chemical modelling. The materials show strong optical absorption in the visible region of the spectrum and most also show strong emission with quantum yields in the range of 13-41% relative to rhodamine 6G (R6G). PLED devices based on the co-poly-ynes were prepared and the most promising was measured to have a brightness of up to 1.10 × 104 cd m-2. PSCs based on donor materials incorporating some of the polymers were prepared and demonstrated power conversion efficiencies of up to 0.24%. This journal is </p

    Dicopper(I) Complexes Incorporating Acetylide-functionalized Pyridinyl-based Ligands::Synthesis, Structural and Photovoltaic Studies

    Get PDF
    Heteroaryl incorporated acetylide-functionalized pyridinyl ligands (<b>L1–L6</b>) with the general formula Py-CC-Ar (Py = pyridine and Ar = <i>thiophene-2-yl</i>, 2,2′<i>-bithiophene]-5-yl</i>, 2,2′<i>:5</i>′,2″<i>-terthiophene]-5-yl</i>, <i>thieno­[2,3-<i>b</i>]­thiophen-2-yl</i>, <i>quinoline-5-yl</i>, <i>benzo­[c]­[1,2,5]­thiadiazole-5-yl</i>) have been synthesized by Pd(0)/Cu­(I)-catalyzed cross-coupling reaction of 4-ethynylpyridine and the respective heteroaryl halide. Ligands <b>L1–L6</b> were isolated in respectable yields and characterized by microanalysis, IR spectroscopy, <sup>1</sup>H NMR spectroscopy, and ESI-MS mass spectrometry. A series of dinuclear Cu­(I) complexes <b>1</b>–<b>10</b> have been synthesized by reacting <b>L1–L6</b> with CuI and triphenylphosphine (PPh<sub>3</sub>) (<b>R1</b>) or with an anchored phosphine derivative, 4-(diphenylphosphino) benzoic acid (<b>R2</b>)/2-(diphenylphosphino)­benzenesulfonic acid (<b>R3</b>), in a stoichiometric ratio. The complexes are soluble in common organic solvents and have been characterized by analytical, spectroscopic, and computational methods. Single-crystal X-ray structure analysis confirmed rhomboid dimeric structures for complexes <b>1</b>, <b>2</b>, <b>4</b>, and <b>5</b>, and a polymeric structure for <b>6</b>. Complexes <b>1</b>–<b>6</b> showed oxidation potential responses close to 0.9 V vs Fc<sup>0/+</sup>, which were chemically irreversible and are likely to be associated with multiple steps and core oxidation. Preliminary photovoltaic (PV) results of these new materials indicated moderate power conversion efficiency (PCE) in the range of 0.15–1.56% in dye-sensitized solar cells (DSSCs). The highest PCE was achieved with complex <b>10</b> bearing the sulfonic acid anchoring functionality

    Data for "The Impact of the Alkyne Substitution Pattern and Metallation on the Photo-isomerization of Azobenzene-based Platinum(II) Di-ynes and Poly-ynes"

    No full text
    Data from the computational modelling described in the article "The Impact of the Alkyne Substitution Pattern and Metallation on the Photo-isomerization of Azobenzene-based Platinum(II) Di-ynes and Poly-ynes". Includes optimised molecular structures, vibrational frequencies, electronic excitation level, simulated infrared (IR) and absorption spectra, and assignments of the electronic transitions
    corecore