8 research outputs found

    Frataxin deficiency promotes endothelial senescence in pulmonary hypertension

    Get PDF
    The dynamic regulation of endothelial pathophenotypes in pulmonary hypertension (PH) remains undefined. Cellular senescence is linked to PH with intracardiac shunts; however, its regulation across PH subtypes is unknown. Since endothelial deficiency of iron-sulfur (Fe-S) clusters is pathogenic in PH, we hypothesized that a Fe-S biogenesis protein, frataxin (FXN), controls endothelial senescence. An endothelial subpopulation in rodent and patient lungs across PH subtypes exhibited reduced FXN and elevated senescence. In vitro, hypoxic and inflammatory FXN deficiency abrogated activity of endothelial Fe-S–containing polymerases, promoting replication stress, DNA damage response, and senescence. This was also observed in stem cell–derived endothelial cells from Friedreich’s ataxia (FRDA), a genetic disease of FXN deficiency, ataxia, and cardiomyopathy, often with PH. In vivo, FXN deficiency–dependent senescence drove vessel inflammation, remodeling, and PH, whereas pharmacologic removal of senescent cells in Fxn-deficient rodents ameliorated PH. These data offer a model of endothelial biology in PH, where FXN deficiency generates a senescent endothelial subpopulation, promoting vascular inflammatory and proliferative signals in other cells to drive disease. These findings also establish an endothelial etiology for PH in FRDA and left heart disease and support therapeutic development of senolytic drugs, reversing effects of Fe-S deficiency across PH subtypes

    Distinct plasma gradients of microRNA-204 in the pulmonary circulation of patients suffering from WHO Groups I and II pulmonary hypertension

    No full text
    Pulmonary hypertension (PH), a heterogeneous vascular disease, consists of subtypes with overlapping clinical phenotypes. MicroRNAs, small non-coding RNAs that negatively regulate gene expression, have emerged as regulators of PH pathogenesis. The muscle-specific micro RNA (miR)-204 is known to be depleted in diseased pulmonary artery smooth muscle cells (PASMCs), furthering proliferation and promoting PH. Alterations of circulating plasma miR-204 across the trans-pulmonary vascular bed might provide mechanistic insights into the observed intracellular depletion and may help distinguish PH subtypes. MiR-204 levels were quantified at sequential pulmonary vasculature sites in 91 patients with World Health Organization (WHO) Group I pulmonary arterial hypertension (PAH) (n = 47), Group II PH (n = 22), or no PH (n = 22). Blood from the right atrium/superior vena cava, pulmonary artery, and pulmonary capillary wedge was collected. Peripheral blood mononuclear cells (PBMCs) were isolated (n = 5/group). Excretion of miR-204 by PAH-PASMCs was also quantified in vitro. In Group I patients only, miR-204 concentration increased sequentially along the pulmonary vasculature (log fold-change slope = 0.22 [95% CI = 0.06-0.37], P = 0.008). PBMCs revealed insignificant miR-204 variations among PH groups ( P = 0.12). Cultured PAH-PAMSCs displayed a decrease of intracellular miR-204 ( P = 0.0004), and a converse increase of extracellular miR-204 ( P = 0.0018) versus control. The stepwise elevation of circulating miR-204 across the pulmonary vasculature in Group I, but not Group II, PH indicates differences in muscle-specific pathobiology between subtypes. Considering the known importance of miR-204 in PH, these findings may suggest pathologic excretion of miR-204 in Group I PAH by PASMCs, thereby accounting for decreased intracellular miR-204 concentration

    Single Nucleotide Polymorphism rs9277336 Controls the Nuclear Alpha Actinin 4‐Human Leukocyte Antigen‐DPA1 Axis and Pulmonary Endothelial Pathophenotypes in Pulmonary Arterial Hypertension

    No full text
    Background Pulmonary arterial hypertension (PAH) is a complex, fatal disease where disease severity has been associated with the single nucleotide polymorphism (SNP) rs2856830, located near the human leukocyte antigen DPA1 (HLA‐DPA1) gene. We aimed to define the genetic architecture of functional variants associated with PAH disease severity by identifying allele‐specific binding transcription factors and downstream targets that control endothelial pathophenotypes and PAH. Methods and Results Electrophoretic mobility shift assays of oligonucleotides containing SNP rs2856830 and 8 SNPs in linkage disequilibrium revealed functional SNPs via allele‐imbalanced binding to human pulmonary arterial endothelial cell nuclear proteins. DNA pulldown proteomics identified SNP‐binding proteins. SNP genotyping and clinical correlation analysis were performed in 84 patients with PAH at University of Pittsburgh Medical Center and in 679 patients with PAH in the All of Us database. SNP rs9277336 was identified as a functional SNP in linkage disequilibrium (r2>0.8) defined by rs2856830, and the minor allele was associated with decreased hospitalizations and improved cardiac output in patients with PAH, an index of disease severity. SNP pulldown proteomics showed allele‐specific binding of nuclear ACTN4 (alpha actinin 4) protein to rs9277336 minor allele. Both ACTN4 and HLA‐DPA1 were downregulated in pulmonary endothelium in human patients and rodent models of PAH. Via transcriptomic and phenotypic analyses, knockdown of HLA‐DPA1 phenocopied knockdown of ACTN4, both similarly controlling cell structure pathways, immune pathways, and endothelial dysfunction. Conclusions We defined the pathogenic activity of functional SNP rs9277336, entailing the allele‐specific binding of ACTN4 and controlling expression of the neighboring HLA‐DPA1 gene. Through inflammatory or genetic means, downregulation of this ACTN4‐HLA‐DPA1 regulatory axis promotes endothelial pathophenotypes, providing a mechanistic explanation for the association between this SNP and PAH outcomes

    Frataxin deficiency promotes endothelial senescence in pulmonary hypertension

    No full text
    The dynamic regulation of endothelial pathophenotypes in pulmonary hypertension (PH) remains undefined. Cellular senescence is linked to PH with intracardiac shunts; however, its regulation across PH subtypes is unknown. Since endothelial deficiency of iron-sulfur (Fe-S) clusters is pathogenic in PH, we hypothesized that a Fe-S biogenesis protein, frataxin (FXN), controls endothelial senescence. An endothelial subpopulation in rodent and patient lungs across PH subtypes exhibited reduced FXN and elevated senescence. In vitro, hypoxic and inflammatory FXN deficiency abrogated activity of endothelial Fe-S–containing polymerases, promoting replication stress, DNA damage response, and senescence. This was also observed in stem cell–derived endothelial cells from Friedreich’s ataxia (FRDA), a genetic disease of FXN deficiency, ataxia, and cardiomyopathy, often with PH. In vivo, FXN deficiency–dependent senescence drove vessel inflammation, remodeling, and PH, whereas pharmacologic removal of senescent cells in Fxn-deficient rodents ameliorated PH. These data offer a model of endothelial biology in PH, where FXN deficiency generates a senescent endothelial subpopulation, promoting vascular inflammatory and proliferative signals in other cells to drive disease. These findings also establish an endothelial etiology for PH in FRDA and left heart disease and support therapeutic development of senolytic drugs, reversing effects of Fe-S deficiency across PH subtypes
    corecore