18 research outputs found

    Association study and expression analysis of stearoyl Co-A desaturase as a candidate gene for fatty acid composition in Indonesian crossbred chickens

    Get PDF
    Background and Objective: The stearoyl-CoA desaturase (SCD) gene encodes an enzyme involved in fatty acid (FA) biosynthesis. The aim of the present study was to investigate the association and expression of SCD as a candidate gene for FA composition in Indonesian crossbred chickens. Materials and Methods: Sixty-two Indonesian crossbred, unsexed chickens (F2 Kampung×broilers) were used. FA composition was measured at 12 weeks of age from thigh meat of crossbred chicken. Results: A single nucleotide polymorphism in coding region c.17492542 C>G of SCD was associated with FA composition, including both unsaturated [linoleic (C18:2n6c) and eicosadienoic (C20:2) acids] and saturated [lauric acid (C12:0)] forms. SCD mRNA expression analysis in liver revealed 6 chickens with extremely high and low FA compositions, of them, high FA birds (n = 3) had higher unsaturated and lower saturated FAs, while the low FA group (n = 3) had lower unsaturated and higher saturated FA levels. SCD expression was higher (p<0.05) in tissues collected from high FA chickens than low FA chickens. Conclusion:These results will improve the understanding of SCD function in FA composition and will shed light on SCD as a potential candidate in the selection of chickens with higher levels of unsaturated and lower levels of saturated FA

    Brucellosis of goat in Bangladesh

    No full text

    Different Growth Patterns of Canine Prostatic Carcinoma Suggests Different Models of Tumor-Initiating Cells

    No full text
    Controversies remain regarding the cell type from which human prostate cancer originates, and many attempts have been made to identify the cellular origin of canine prostate cancer but without definitive proof. This study aims to evaluate the expression of luminal (androgen receptor [AR], cytokeratin [CK]8/18) and basal (CK14, CK5) cell markers in different histologic subtypes of canine prostatic carcinoma (PC) and to suggest the most likely tumor-initiating cells. Normal prostates (n = 8) were characterized by ARþCK8/18þ luminal cells and few CK5þ basal cells, while CK14 was absent. Similar pattern was observed in all 35 prostates with benign prostatic hyperplasia, except few scattered CK14þ basal cells in 13 samples (37.14%). AR was localized in the nucleus of both normal and hyperplastic cells. In 34 samples of PC, the following growth patterns were identified: cribriform (44.12%), solid (32.35%), small acinar/ductal (20.59%), and micropapillary (2.94%). Most PCs expressed AR and CK8/18, while CK5 and CK14 expression was observed in 25% and 20% of cases, respectively. AR revealed a variable intracellular distribution, both nuclear and cytoplasmic. Solid PC was characterized by an undifferentiated or aberrant phenotype with a reduced expression of AR and CK8/18, increased number of CK14þ cells, and 7 antigen expression patterns. This study demonstrated a predominance of differentiated luminal cell types in canine prostatic tumors, although the role of basal cells in prostate carcinogenesis should also be considered. Moreover, few scattered CK5þ cells in ARþCK8/18þ tumors identified the existence of intermediate cells, from which neoplastic transformation may alternatively commence

    Different Growth Patterns of Canine Prostatic Carcinoma Suggests Different Models of Tumor-Initiating Cells

    No full text
    Controversies remain regarding the cell type from which human prostate cancer originates, and many attempts have been made to identify the cellular origin of canine prostate cancer but without definitive proof. This study aims to evaluate the expression of luminal (androgen receptor [AR], cytokeratin [CK]8/18) and basal (CK14, CK5) cell markers in different histologic subtypes of canine prostatic carcinoma (PC) and to suggest the most likely tumor-initiating cells. Normal prostates (n = 8) were characterized by AR+CK8/18+ luminal cells and few CK5+ basal cells, while CK14 was absent. Similar pattern was observed in all 35 prostates with benign prostatic hyperplasia, except few scattered CK14+ basal cells in 13 samples (37.14%). AR was localized in the nucleus of both normal and hyperplastic cells. In 34 samples of PC, the following growth patterns were identified: cribriform (44.12%), solid (32.35%), small acinar/ductal (20.59%), and micropapillary (2.94%). Most PCs expressed AR and CK8/18, while CK5 and CK14 expression was observed in 25% and 20% of cases, respectively. AR revealed a variable intracellular distribution, both nuclear and cytoplasmic. Solid PC was characterized by an undifferentiated or aberrant phenotype with a reduced expression of AR and CK8/18, increased number of CK14+ cells, and 7 antigen expression patterns. This study demonstrated a predominance of differentiated luminal cell types in canine prostatic tumors, although the role of basal cells in prostate carcinogenesis should also be considered. Moreover, few scattered CK5+ cells in AR+CK8/18+ tumors identified the existence of intermediate cells, from which neoplastic transformation may alternatively commence

    STARTING POINT OF BUCKWHEAT BREEDING IN BANGLADESH

    No full text
    Buckwheat is not commonly cultivated in Bangladesh because it is an ancient minor crop. Common buckwheat is familiar as a rabi season crop and is rarely cultivated in some areas of northern part in Bangladesh. Henceforth, organized research improvement has not been established yet on buckwheat and so research information about buckwheat breeding is very limited. Again no developed variety available in Bangladesh. The varieties which are being cultivated in farmer’s level are actually local cultivar. Bangladesh Agricultural Research Institute (BARI) started working on buckwheat with five genotype, since 2018 and collected from PGRC, BARI. Characterization, different yield trial in different regions of Bangladesh have been conducted for selection of promising genotype

    Hepatic transcriptome analysis identifies genes, polymorphisms and pathways involved in the fatty acids metabolism in sheep

    Get PDF
    Fatty acids (FA) in ruminants, especially unsaturated FA (USFA) have important impact in meat quality, nutritional value, and flavour quality of meat, and on consumer’s health. Identification of the genetic factors controlling the FA composition and metabolism is pivotal to select sheep that produce higher USFA and lower saturated (SFA) for the benefit of sheep industry and consumers. Therefore, this study was aimed to investigate the transcriptome profiling in the liver tissues collected from sheep with divergent USFA content in longissimus muscle using RNA deep-sequencing. From sheep (n = 100) population, liver tissues with higher (n = 3) and lower (n = 3) USFA content were analysed using Illumina HiSeq 2500. The total number of reads produced for each liver sample were ranged from 21.28 to 28.51 million with a median of 23.90 million. Approximately, 198 genes were differentially regulated with significance level of p-adjusted value 1.5) in the higher USFA group. A large proportion of key genes involved in FA biosynthesis, adipogenesis, fat deposition, and lipid metabolism were identified, such as APOA5, SLC25A30, GFPT1, LEPR, TGFBR2, FABP7, GSTCD, and CYP17A. Pathway analysis revealed that glycosaminoglycan biosynthesis- keratan sulfate, adipokine signaling, galactose metabolism, endocrine and other factors-regulating calcium metabolism, mineral metabolism, and PPAR signaling pathway were playing important regulatory roles in FA metabolism. Importantly, polymorphism and association analyses showed that mutation in APOA5, CFHR5, TGFBR2 and LEPR genes could be potential markers for the FA composition in sheep. These polymorphisms and transcriptome networks controlling the FA variation could be used as genetic markers for FA composition-related traits improvement. However, functional validation is required to confirm the effect of these SNPs in other sheep population in order to incorporate them in the sheep breeding program

    RNA deep sequencing reveals novel transcripts and pathways involved in the unsaturated fatty acid metabolism in chicken

    No full text
    Fatty acids in chicken meat especially the unsaturated fatty acids (UFA) contribute in the nutritional value, meat quality, and human health. A deeper knowledge in the genomics of fatty acids (FA) is important as it identifies effective markers to be used in marker-assisted breeding in chickens for higher UFA leading to the economic benefits in chicken production industry. Therefore, this study aimed to investigate trancriptome profilling in the liver tissues collected from chicken with divergent UFA contents in the breast muscle tissues using RNA deep-sequencing. Liver tissues from chicken with higher (n = 3) and lower (n = 3) UFA were analysed using Illumina HiSeq 2500. The total number of reads produced for each liver sample ranged from 24.30 to 29.97 million. Approximately 367 genes were differentially regulated with the significance level of p-adjusted value  1.5) in higher UFA group. Differentially regulated genes in high UFA liver samples were enriched in metabolic processes such as heme binding, sodium channel activity, and iron ion binding. Pathway analysis identified the metabolic pathways, ECM receptor interaction, focal adhesion, peroxisome, Wnt signaling and TGF-Beta signaling pathways which may play important roles in UFA metabolism. Differential gene expression analysis identified candidate genes in the ATP synthesis, apovitellenin, cytochrome P450, hydroxysteroid, solute carrier and stearoyl-CoA desaturase family. These differentially expressed genes and pathways may lead to UFA variation and could be used as genetic marker for UFA traits in chickens. However, further validation is required to confirm the effect of these genes in the UFA-related molecules metabolism in other chicken populations

    Transcriptome signature of liver tissue with divergent mutton odour and flavour using RNA deep sequencing

    No full text
    Mutton consumption is less popular in many Asian countries including Indonesia, whose consumers often complain about the unpleasant flavour and odour of the meat. The main causes of mutton odour are the two compounds of branched chain fatty acid (BCFA): methylnonanoic (MNA), phenol, 3-methyl (MP), 4-methylnonanoic (MNA) and 4-ethyloctanoic (EOA) present in all the adipose tissue; and the 3-methylindole (MI) or skatole and indole, which are originated from pastoral diets. It is crucial to understand the genetic mechanism of mutton odour and flavour (MOF) to select sheep for lower BCFA and indole thus reduce the unpleasant flavour of meat. The aim of the present study was to investigate transcriptome profiling in liver tissue with divergent MOF using RNA deep sequencing. Liver tissues from higher (n = 3) and lower (n = 3) MOF sheep were analysed using Illumina HiSeq 2500. The total number of reads produced for each liver sample ranged from 21.37 to 25.37 million. Approximately 103 genes were differentially expressed (DEGs) with significance level of p-adjusted value  1.5) in higher MOF group. Differentially regulated genes in high MOF liver samples were enriched in biological processes such as cellular response to chemical stimulus and endogenous stimulus; cellular components such as such as basement membrane and extracellular matrix; and molecular functions such as haeme binding and oxidoreductase activity. Among the DEGs, metabolic phase I related genes belonging to the cytochrome P450 CYP2A6 were dominantly expressed. Additionally, phase II conjugation genes including UDP glucuronosyltransferases UGT2B18, sulfotransferase SULT1C1, and glutathione S-transferase GSTM1 were identified. The dominant candidate genes for SOF could be cytochrome P450, sodium-channel protein, transmembrane protein, glutathione transferase, UDP glucuronosyltransferases and sulfotransferase. Pathway analysis identified steroid hormone biosynthesis and chemical carcinogenesis by cytochrome P450 pathways which may play important roles in MOF-related molecules metabolism. This work highlighted potential genes and gene-networks that may affect meat off flavour and odour in sheep
    corecore