49 research outputs found

    Structural identification: Opportunities and challenges

    Get PDF
    Some of the significant opportunities and facing successful implementation of the structural identification (St-Id) in civil infrastructure are discussed. The greatest challenges in successful applications of St-Id have emerged as systems integration requirements, requiring mastery in management, modeling and simulation, experimental arts, information technology, and decision-making. Formulating effective policies, strategies, and project-specific designs for improving their performance as systems cannot be expected unless it is understood how infrastructures perform as complex systems. The St-Id may be a means of establishing a quantitative and mechanistic baseline characterization for a newly constructed system similar to a birth certificate. Some major infrastructure owners and consultants have developed an appreciation of the value of St-Id in relation to retrofit design and historic preservation

    Vibration-based monitoring of civil infrastructure: challenges and successes

    Get PDF
    Author's manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s13349-011-0009-5© Springer-Verlag 2011Co -published with International Society for Structural Health Monitoring of Intelligent InfrastructureStructural health monitoring (SHM) is a relatively new paradigm for civil infrastructure stakeholders including operators, consultants and contractors which has in the last two decades witnessed an acceleration of academic and applied research in related areas such as sensing technology, system identification, data mining and condition assessment. SHM has a wide range of applications including, but not limited to, diagnostic and prognostic capabilities. However, when it comes to practical applications, stakeholders usually need answers to basic and pragmatic questions about in-service performance, maintenance and management of a structure which the technological advances are slow to address. Typical among the mismatch of expectation and capability is the topic of vibration-based monitoring (VBM), which is a subset of SHM. On the one hand there is abundant reporting of exercises using vibration data to locate damage in highly controlled laboratory conditions or in numerical simulations, while the real test of a reliable and cost effective technology is operation on a commercial basis. Such commercial applications are hard to identify, with the vast majority of implementations dealing with data collection and checking against parameter limits. In addition there persists an unhelpful association between VBM and 'damage detection' among some civil infrastructure stakeholders in UK and North America, due to unsuccessful transfer of technology from the laboratory to the field, and this has resulted in unhealthy industry scepticism which hinders acceptance of successful technologies. Hence the purpose of this paper is showcase successful VBM applications and to make the case that VBM does provide valuable information in real world applications when used appropriately and without unrealistic expectations. © 2011 Springer-Verlag

    Ginger inhibits cell growth and modulates angiogenic factors in ovarian cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ginger (<it>Zingiber officinale </it>Rosc) is a natural dietary component with antioxidant and anticarcinogenic properties. The ginger component [6]-gingerol has been shown to exert anti-inflammatory effects through mediation of NF-κB. NF-κB can be constitutively activated in epithelial ovarian cancer cells and may contribute towards increased transcription and translation of angiogenic factors. In the present study, we investigated the effect of ginger on tumor cell growth and modulation of angiogenic factors in ovarian cancer cells <it>in vitro</it>.</p> <p>Methods</p> <p>The effect of ginger and the major ginger components on cell growth was determined in a panel of epithelial ovarian cancer cell lines. Activation of NF-κB and and production of VEGF and IL-8 was determined in the presence or absence of ginger.</p> <p>Results</p> <p>Ginger treatment of cultured ovarian cancer cells induced profound growth inhibition in all cell lines tested. We found that <it>in vitro</it>, 6-shogaol is the most active of the individual ginger components tested. Ginger treatment resulted in inhibition of NF-kB activation as well as diminished secretion of VEGF and IL-8.</p> <p>Conclusion</p> <p>Ginger inhibits growth and modulates secretion of angiogenic factors in ovarian cancer cells. The use of dietary agents such as ginger may have potential in the treatment and prevention of ovarian cancer.</p

    Principles, Concepts and Assessment of Structural Health Monitoring

    No full text

    Vibration-based monitoring of civil infrastructure : challenges and successes

    Get PDF
    Structural health monitoring (SHM) is a relatively new paradigm for civil infrastructure stakeholders including operators, consultants and contractors which has in the last two decades witnessed an acceleration of academic and applied research in related areas such as sensing technology, system identification, data mining and condition assessment. SHM has a wide range of applications including, but not limited to, diagnostic and prognostic capabilities. However, when it comes to practical applications, stakeholders usually need answers to basic and pragmatic questions about in-service performance, maintenance and management of a structure which the technological advances are slow to address. Typical among the mismatch of expectation and capability is the topic of vibration-based monitoring (VBM), which is a subset of SHM. On the one hand there is abundant reporting of exercises using vibration data to locate damage in highly controlled laboratory conditions or in numerical simulations, while the real test of a reliable and cost effective technology is operation on a commercial basis. Such commercial applications are hard to identify, with the vast majority of implementations dealing with data collection and checking against parameter limits. In addition there persists an unhelpful association between VBM and 'damage detection' among some civil infrastructure stakeholders in UK and North America, due to unsuccessful transfer of technology from the laboratory to the field, and this has resulted in unhealthy industry scepticism which hinders acceptance of successful technologies. Hence the purpose of this paper is showcase successful VBM applications and to make the case that VBM does provide valuable information in real world applications when used appropriately and without unrealistic expectations.Department of Civil and Environmental Engineerin

    Civil engineer for urban livability, sustainability and resilience

    No full text
    This is the author accepted manuscript. The final version is available from Taylor and Francis via the DOI in this record Urban infrastructures, to fully take advantage of future investments, must first be recognized as interconnected complex systems of systems. This forum paper describes research and education needs that, if properly addressed, could prepare the civil engineering profession to meet the new challenges of urban infrastructure renovation. Among the needs, the objective documentation of the life-cycle performance of constructed systems could leverage novel sensing systems and advances in computer science, tools often untapped by civil engineering programs. Other needs and opportunities involve the design process, perhaps the most important milestone in the development of civil engineers. The topics and needs discussed in this paper could becomecore curriculum areas in newly developed postgraduate and eventually in undergraduate programs. The authors hypothesize that, if the integration of such topics is successful, civil engineers could become true protagonists of the rejuvenation of the US urban infrastructures and future stewards of cities and megacities
    corecore