11 research outputs found

    Synthesis of poly(N-isopropylacrylamide) polymer for fabrication of thermo-responsive cotton fabric

    Get PDF
    385-397Thermo-responsive poly (N-isopropylacrylamide) (PNIPAM) polymer has been synthesized by free radical addition polymerization method. The chemical structure of the synthesized polymer has been clarified by FTIR spectroscopy and 1 H NMR analyses. Turbidity test shows that the synthesized polymer exhibits thermo-responsive properties, depending on change in temperature. Its lower critical solution temperature (LCST) value is measured as 31°C by DSC analysis. The PNIPAM polymer is then applied onto the cotton fabric in two different concentrations using double-bath impregnation method. Change in hydrophilic character of the fabric, which is temperature dependent, has been revealed by drop and absorption capacity tests, contact angle measurement and surface energy calculation. The test results show that the fabrics exhibit thermoresponsive behavior. Their hydrophilic character is turned to the hydrophobic character above LCST of the polymer. The water vapor permeability of the polymer treated fabrics at temperatures above LCST increases as compared to the untreated fabric due to the increase in fabric porosity. Below LCST, water vapor permeability is increased because of the increasing hydrophility. Consequently, it is concluded that the water vapor permeability of the fabrics can be controlled by changing the temperaturedependent hydrophilic/hydrophobic characteristic and porosity, resulting from swelling or shrinkage of the polymer molecules

    Synthesis of poly(N-isopropylacrylamide) polymer for fabrication of thermo-responsive cotton fabric 

    Get PDF
    Thermo-responsive poly (N-isopropylacrylamide) (PNIPAM) polymer has been synthesized by free radical addition polymerization method. The chemical structure of the synthesized polymer has been clarified by FTIR spectroscopy and 1H NMR analyses. Turbidity test shows that the synthesized polymer exhibits thermo-responsive properties, depending on change in temperature. Its lower critical solution temperature (LCST) value is measured as 31°C by DSC analysis. The PNIPAM polymer is then applied onto the cotton fabric in two different concentrations using double-bath impregnation method. Change in hydrophilic character of the fabric, which is temperature dependent, has been revealed by drop and absorption capacity tests, contact angle measurement and surface energy calculation. The test results show that the fabrics exhibit thermo-responsive behavior. Their hydrophilic character is turned to the hydrophobic character above LCST of the polymer. The water vapor permeability of the polymer treated fabrics at temperatures above LCST increases as compared to the untreated fabric due to the increase in fabric porosity. Below LCST, water vapor permeability is increased because of the increasing hydrophility. Consequently, it is concluded that the water vapor permeability of the fabrics can be controlled by changing the temperature-dependent hydrophilic/hydrophobic characteristic and porosity, resulting from swelling or shrinkage of the polymer molecules

    Isı Depolama Özellikli Mikrokapsül Uygulanmış Kumaşların Isı Depolama ve Konfor ile İlgili Özelliklerinin Araştırılması

    No full text
    In this study, investigation of heat storage and comfort-related properties of fabrics treated with microcapsules containing phase change material was aimed. For this purpose, heat storage property of the microcapsules incorporated fabrics were measured by using DSC (Differential Scanning Calorimetry) instrument. The presence and distribution of microcapsules on fabric structure were investigated by SEM (Scanning Electron Microscope) analysis. The comfort-related mechanical, physical, and surface properties of cotton fabrics were tested by standard test methods. According to the DSC results, it was determined that fabrics treated with microcapsule had heat storage capacity of 6.1749 J/g. Air permeability values of the fabrics treated with microcapsule decreased because of closing of the pores in the structure of the fabric by microcapsules. According to the strength and friction test results, significant differences between the properties of the reference and treated fabric were not observed. The bending strength test results showed that microcapsule applied fabrics had a higher bending rigidity than reference fabric. Drape of microcapsule applied fabrics also decreased compared to untreated reference fabri

    Tıbbi ve Aromatik Bitkilerin Antibakteriyel Aktivitesi ve Tekstil Sektöründe Kullanımı

    No full text
    Özet: İnsanların doğala yönelmesi ile birlikte tıbbi ve aromatik bitkilere ilgi gün geçtikçe artmaktadır. Tıbbi aromatik bitkiler, hastalıkları önlemek ve iyileştirmek, sağlığı devam ettirmek için insanlık tarihinin başlangıcından beri ilaç olarak kullanılan bitkilerdir. Bu bitkilerin kullanımları ilaç, gıda, meşrubat, kozmetik sanayi, sabun ve parfüm üretiminde sınırlı kalmamış, günümüzde organik tarım ve hayvancılıkta kullanımları artış göstermektedir. Ayrıca günümüzde farklı özelliklerinden dolayı birçok sektörde de kullanılmaya başlanmıştır. Bunlardan bir tanesi de tekstil sektörüdür. Tıbbi ve aromatik bitkiler barındırdıkları antibakteriyel özellik sayesinde sentetik tekstil bitim maddelerine alternatif oluşturmaktadır. Tekstilde kullanılacak antibakteriyel maddelerden beklenen en önemli özelliklerden bir tanesi kullanılan maddenin insan ve çevre sağlığını olumsuz etkilememesi ve tekstil mamulünün diğer özelliklerini olumsuz yönde değiştirmemesidir. Bu nedenle son yıllarda çevre dostu ve doğal esaslı antibakteriyel maddelerin eldesi ve tekstil uygulamalarına olan ilgi hızla artmaktadır. Buna bağlı olarak yapılan çalışmada; tıbbi ve aromatik bitkilerin antibakteriyel aktivitesinin çeşitli yöntemlerle belirlenmesi ve tekstil sektöründe antibakteriyel bitim maddesi olarak kullanımı araştırılmıştır. Anahtar kelimeler: Tıbbi ve aromatik bitkiler, antibakteriyel aktivite, tekstil Antibacterial Activity of Medicinal and Aromatic Plants and Utilization in Textile Industry Abstract: Interest in medicinal and aromatic plants increases along with day by day with natural demands of people. Medicinal and aromatic plants, that are used for protecting and healing illness, and continving the human health, since the beginning of humanity. These plants are used not only in medicine, food, beverage, cosmetic industry, soap and perfume production, but also organic agriculture and livestock. In addition, they have begun to use in many areas because of their different properties. One of this area is textile industry. Medicinal and aromatic plants are alternative source to synthetic textile finishing agens since they have antibacterial activity in different tissues of plants. The most important properties of antibacterial substances, which will be used in textile industry, are negative lost on of used substances environment and human health and not to change negatively properties of textile product. Therefore, the interest in textile applications and to obtain eco-friendly, natural based increases rapidly in recent years. Accordingly in the study, it has been investigated the determination of antibacterial activity of medicinal and aromatic plants by different methods and their use as antibacterial finishing agent in textile industry. Keywords: Medicinal and aromatic plants, antibacterial activity, textil

    Nanokil Katkılı PAN Nanolif Sentezi ve Karakterizasyonu

    No full text
    Özet: Bu çalışmada, nanolif elde etme yöntemlerinden en yaygın yöntem olan elektrolif çekim (electrospinning) yöntemi kullanılarak, poliakrilonitril (PAN) polimeri ile nanolif üretilmiştir. Üretilen nanolifler arasına daha sonraki çalışmalarda adsorpsiyon amaçlı kullanılabileceği düşünülerek nanokil serpilerek nanokil katkılı PAN nanolif yüzey elde edilmiştir. Üretilen nanokil katkılı PAN nanoliflerin, taramalı elektron mikroskobu (SEM) ile nanolif boyutları ve lif morfolojileri incelenerek, yaklaşık 950 nm çaplarında oldukları görülmüştür. FT-IR ile kimyasal yapı aydınlatılmaya çalışılmış ve bileşimindeki fonksiyonel grupların varlığı incelenmiştir. Nanoliflerin yapısında PAN ve nanokile ait piklerin oldukları belirlenmiştir. Termal gravimetrik analiz yöntemi (TGA) kullanılarak nanokil katkılı PAN nanolifler termal olarak karakterize edilmeye çalışılmıştır. Çalışılan sıcaklık aralığında iki aşamalı bozunmanın gerçekleştiği ve termal bozunmanın tamamlanmadığı görülmüştür. Nanokil katkılı PAN nanoliflerinden sentezlenen yüzeyin, alternatif bir adsorban madde olarak kullanılabileceği tespit edilmiştir. Anahtar kelimeler: Nanolif, nanokil, PAN (poliakrilonitril), elektrolif çekim , SEM. Synthesis and Characterization of PAN Nanofiber Added Nanoclay Abstract: In this study, nanofibers have been prepared from polyacrylonitril (PAN) polymer by using electrospinnig method which is the most common method to obtain nanofibers. Nanoclay doped PAN nanofiber webs were prepared by sprinkled nanoclay in spinning process of nanofibers which may be used to purpose of adsorption in other study. Diameter sizes and morphology of the produced PAN nanofibers including nanoclay were examined through SEM and it was observed that nanofibers have about 950 nm diameters. The chemical structure has been tried to be illuminated by using FT-IR and the presence of functional groups in this composition have been investigated. It was observed that there were peak belonging to PAN and nanoclay within the structure of nanofibers. PAN nanofibers included nanoclay have been tried to be characterized thermally by using the TGA (thermal gravimetric analysis) method. In the studied range of temperature, it was observed that two-stage degradation occurred and the thermal degradation was not completed. It was determined that the PAN nanofibers were electrospun with nanoclay could be used as a new alternative adsorbent. Key words: Nanofibers, nanoclay, PAN(Polyacrylonitrile), electrospinning, SEM

    Nanokil Katkılı PVA/Kitosan Nanolif Sentezi ve Karakterizasyonu

    No full text
    Özet: Yapılan çalışmada, doğal bir polimer olan kitosan polimeri ile polivinil alkol (PVA) polimeri kullanılarak elektrostatik lif çekim (elektrospinning) yöntemi ile nananolif eldesi gerçekleştirilmiştir. Çapraz bağlayıcı olarak çözeltiye gluteraldehit (GA) ilave edilmiştir. Çekilen nanoliflerin arasına nanokil konularak PVA/Kitosan nanolif-nanokil yüzey elde edilmiştir. Elde edilen nanokil katkılı PVA/Kitosan nanolif yüzeyin taramalı elektron mikroskobu (SEM) görüntüleri alınarak lif morfolojisi ve lif boyutları incelenmiş ve lif çaplarının 110-140 nm arasında oluştuğu görülmüştür. FT-IR analizleri ile elde edilen yüzeyin yapısındaki fonksiyonel gruplar incelenmiş, çapraz bağların oluştuğu gözlenmiştir. TGA (termal gravimetrik analiz) yöntemi kullanılarak sıcaklık değişimi ile numunedeki ağırlık kaybı incelenmiş ve iki aşamalı bozunmanın gerçekleştiği görülmüştür. Anahtar kelimeler: Nanolif, PVA, kitosan, elektrostatik lif çekim, nanokil Synthesis and Characterization of PVA/Chitosan Nanofiber Added Nanoclay Abstract: In this study, nanofibers have been prepared through the electrospinning method in which chitosan- a natural polymer- and polyvinyl alcohol (PVA) polymers were used. Gluteraldehide (GA) was added into the solution as cross-linker. A certain amount of nanoclay was added between the layers of the electrospun nanofibers to obtain PVA/Chitosan nanofiber and nanoclay layer. After that, the fiber morphology and fiber dimensions of the PVA/Chitosan nanofiber and nanoclay were examined by scanning electron microscope (SEM). As a result, it was determined that the diameter of the fiber was between 110 and 140 nm. By FT-IR analysis, the functional groups in the structure of the nanofiber-nanoclay layer and whether the cross-linkers formed were examined. Finally, the change of temperature and the weight loss in the sample were examined through TGA (thermal gravimetric analysis) and it was observed that two-stage degradation occurred. Key words : Nanofiber, PVA, chitosan, electrospinning, nanocla

    Herstellung Vernetzter elektronisch gesponnener Nanofasern aus Gelatine, die Rosmarinöl für antibakterielle Anwendung enthalten

    No full text
    Tato studie se zabývá výrobou nanovláken s antibakteriálními vlastnostmi zaměřenou na získání nanovlákenného produktu na bázi biopolymeru, který se používá pro hojení ran. Za tímto účelem byl použit přírodní rozmarýnový olej, který posiluje antibakteriální aktivitu nanovláken. K výrobě nanovláken byl použit želatinový polymer. Jak potvrzuje studium literatury, rozmarýnový olej má antibakteriální účinky, a je také používán v aromaterapii, lokálně k uklidnění svalů, a díky svým antibakteriálním a antimykotickým vlastnostem má i léčivé účinky. Želatina je přírodní biopolymer a její využití v medicíně je široké – například se používá při ošetřování ran nebo je součástí různých léčiv atd. Proto jsme se zaměřili na kombinaci nanovlákenných látek a rozmarýnu. nepopiratelně blahodárných účinků želatiny s vysoce užitnými vlastnostmi nanovlákenných látek a rozmarýnu.Niniejsze opracowanie poświęcone jest produkcji nanowłókien o działaniu antybakteryjnym, dotyczącej pozyskiwania produktu z nanowłókien na bazie biopolimeru, który stosowany jest do gojenia ran. W tym celu zastosowano naturalny olej rozmarynowy, który wzmacnia antybakteryjne działanie nanowłókien. Do produkcji nanowłókien użyto polimeru żelatynowego. Jak wynika z literatury, olej rozmarynowy ma działanie antybakteryjne i stosowany jest również w aromaterapii, miejscowo do uspokojenia mięśni i dzięki swoim cechom antybakteryjnym i antygrzybiczym ma także działanie lecznicze. Żelatyna to naturalny biopolimer, który jest szeroko stosowany w medycynie – przykładowo używany jest do opatrunku ran lub jako element różnych substancji leczniczych itd. Dlatego skupiliśmy się na połączeniu niepodważalnego korzystnego działania żelatyny i wysoce skutecznych właściwości substancji nanowłóknowych i rozmarynu.In this study, fabrication of nanofibers with antibacterial property was aimed to obtain biopolymer-based nano-fiber product that is used for wound healing. For this aim, natural rosemary oil was used to give antibacterial activity to the nanofibers and gelatin polymer was used to produce nanofibers. According to literature survey, rosemary oil has antibacterial activity and it is also used in aromatherapy, topically to sooth muscles, and medicinally thanks to its antibacterial and antifungal properties. Gelatin is a natural biopolymer and extensively used in medical products such as wound dressings, drug delivery systems etc. Therefore, the combination of inherently beneficial effects of gelatin material with enhanced properties of nanofibers mats and rosemary oil was aimed at. In the study, gelatin nanofibers containing rosemary oil were fabricated by an electrospinning method. Gelatin was dissolved in distilled water/acetic acid at concentration of 10 % at first step. Then, rosemary oil and surfactant (Span 20) was added to solution and stirred for 6 hours. To get a cross-linked nano-fibrous mat, two different cross-linking methods and different cross-linkers were applied. In the first method, glutaraldehyde or tannic acid as a cross-linker was added to polymer solution before electrospinning. In the second method, nanofibers were spun from rosemary oil/gelatin solution and then cross-linked by GA and tannic acid, separately. Morphology and fiber diameter were investigated using SEM. FT-IR spectroscopy was used to identify cross-linked fiber structure and the presence of rosemary oil in electro spun mat. The solubility of cross-linked fiber mat was also investigated.In dieser Studie ging es darum, Nanofasern mit antibakteriellen Eigenschaften zu produzieren. Das Ziel bestand in der Gewinnung von Nanofaserprodukte auf Biopolymerbasis, das zur Wundbehandlung Verwendung findet. Zu diesem Zweck wurde natürliches Rosmarinöl benutzt, um die antibakterielle Aktivität der Nanofasern zu verstärken. Zur Produktion von Nanofasern wurde Gelatinpolymer verwendet. Laut Literatur wirkt Rosmarinöl antibakteriell und wird ebenfalls in der Aromatherapie angewendet, namentlich um die Muskeln zu beruhigen. Außerdem die antibakteriellen und antifungiellen Eigenschaften des Textils heilsame Wirkung. Gelatine ist ein natürliches Polymer und wird hauptsächlich bei der Wundbehandlung usw. verwendet. Daher richtete sich unser Interesse auf die Kombination der inhärent heilsamen Effekte von Gelatinematerial mit den verbesserten Eigenschaften von Nanofasermatten und Rosmarinöl

    Mikrokapsle poly(methylmethakrylát – kopolymer) / kyseliny n-hexadekanové pro tepelný komfort textilií

    No full text
    Tepelný komfort získaný pomocí mikrokapsulovaných materiálů se změnou fází (MPCMs) u inovačních textilních výrobků je široce zkoumán pro svou vysokou přidanou hodnotou, a procesy spojené s aplikací mikrokapslí na textilie se rapidně zrychlují ve snaze dosáhnout optimálního výkonu. Tato studie se zaměřila na přípravu, charakterizaci a stanovení tepelných n- komethakrylovou kyselinou) (PMMA-co-MA), které mohou být využity u textilních výrobků s tepelně izolačními vlastnostmi. - methakrylát- vlastností mikrokapslí kyseliny hexadekanové s poly (methyl- methakrylát-komethakrylovou kyselinou) (PMMA-co-MA), které mohou být využity u textilních výrobků s tepelně izolačními vlastnostmi

    Polymethylmethacrylat-Mikrokapseln zur Gewährleistung von wärmekomfort in Textilien

    No full text
    Tepelný komfort získaný pomocí mikrokapsulovaných materiálů se změnou fází (MPCMs) u inovačních textilních výrobků je široce zkoumán pro svou vysokou přidanou hodnotou, a procesy spojené s aplikací mikrokapslí na textilie se rapidně zrychlují ve snaze dosáhnout optimálního výkonu. Tato studie se zaměřila na přípravu, charakterizaci a stanovení tepelných n- komethakrylovou kyselinou) (PMMA-co-MA), které mohou být využity u textilních výrobků s tepelně izolačními vlastnostmi. - methakrylát- vlastností mikrokapslí kyseliny hexadekanové s poly (methyl- methakrylát-komethakrylovou kyselinou) (PMMA-co-MA), které mohou být využity u textilních výrobků s tepelně izolačními vlastnostmi.Komfort cieplny uzyskany przy pomocy materiałów mikrokapsułowanych ze zmienioną fazą (MPCMs) w innowacyjnych produktach tekstylnych jest przedmiotem szeroko zakrojonych badań ze względu na wysoką wartość dodaną. Coraz bardziej do tkanin stosowana jest także technologia mikrokapsułowania, co ma na celu osiągnięcie optymalnej wydajności. Niniejsze opracowanie dotyczy przygotowania, scharakteryzowania i określenia właściwości cieplnych mikrokapsułek kwasu n-heksadekanowego z polimetakrylanem metylu - kopolimerem (PMMA-co-MA), które mogą być wykorzystane w produktach tekstylnych o właściwościach termoizolacyjnych.Thermal comfort using microencapsulated phase change materials (MPCMs) in innovative textile products and are widely investigated for their highly added value and processes related to microcapsule application to textiles are rapidly increasing to get the optimum performance. This study is focused on the preparation, characterization, and determination of thermal properties of microencapsulated n-hexadecane with poly(methyl methacrylate-co-methacrylic acid) (PMMA-co-MA) to be used in textiles with heat storage property.Der Wärmekomfort, wie er mit Hilfe von Mikrokapselmaterialien bei Änderung der Phasen (MPCMs) bei innovativen textilen Erzeugnissen gewonnen wird, wird wegen seines hohen Zugabewertes gründlich erforscht. Die Prozesse, die mit der Anwendung von Mikrokapseln an Textilien verbunden sind, beschleunigen sich rapide bei der Bemühung, optimale Leistung zu erreichen. Diese Studie konzentriert sich auf die Aufbereitung, Charakterisierung und die Festlegung von Wärmeeigenschaften der Mikrokapseln der Säure n- Hexadekan-Polymethylmethacrylat-Komethakryl-Säure (PMMA-co-MA), die bei Textilprodukten mit isolierenden Eigenschaften genutzt werden können
    corecore