7 research outputs found

    Are greenhouse gas signals of Northern Hemisphere winter extra-tropical cyclone activity dependent on the identification and tracking algorithm?

    Get PDF
    For Northern Hemisphere extra-tropical cyclone activity, the dependency of a potential anthropogenic climate change signal on the identification method applied is analysed. This study investigates the impact of the used algorithm on the changing signal, not the robustness of the climate change signal itself. Using one single transient AOGCM simulation as standard input for eleven state-of-the-art identification methods, the patterns of model simulated present day climatologies are found to be close to those computed from re-analysis, independent of the method applied. Although differences in the total number of cyclones identified exist, the climate change signals (IPCC SRES A1B) in the model run considered are largely similar between methods for all cyclones. Taking into account all tracks, decreasing numbers are found in the Mediterranean, the Arctic in the Barents and Greenland Seas, the mid-latitude Pacific and North America. Changing patterns are even more similar, if only the most severe systems are considered: the methods reveal a coherent statistically significant increase in frequency over the eastern North Atlantic and North Pacific. We found that the differences between the methods considered are largely due to the different role of weaker systems in the specific methods

    IMILAST: a community effort to intercompare extratropical cyclone detection and tracking algorithms

    Get PDF
    The variability of results from different automated methods of detection and tracking of extratropical cyclones is assessed in order to identify uncertainties related to the choice of method. Fifteen international teams applied their own algorithms to the same dataset—the period 1989–2009 of interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERAInterim) data. This experiment is part of the community project Intercomparison of Mid Latitude Storm Diagnostics (IMILAST; see www.proclim.ch/imilast/index.html). The spread of results for cyclone frequency, intensity, life cycle, and track location is presented to illustrate the impact of using different methods. Globally, methods agree well for geographical distribution in large oceanic regions, interannual variability of cyclone numbers, geographical patterns of strong trends, and distribution shape for many life cycle characteristics. In contrast, the largest disparities exist for the total numbers of cyclones, the detection of weak cyclones, and distribution in some densely populated regions. Consistency between methods is better for strong cyclones than for shallow ones. Two case studies of relatively large, intense cyclones reveal that the identification of the most intense part of the life cycle of these events is robust between methods, but considerable differences exist during the development and the dissolution phases

    Changes in Blocking Characteristics during the First Part of the 21st Century

    No full text
    A global blocking climatology published by this group for events that occurred during the late 20th century examined the comprehensive list of characteristics that included block intensity. In addition to confirming the results of other published climatologies, they found that Northern Hemisphere blocking was stronger than Southern Hemisphere events and winter events are stronger than summer ones. This work also examined the interannual variability of blocking as related to El Niño. Since this time, there is evidence that the occurrence of blocking has increased globally. A comparison of blocking characteristics during the first part of the 21st century to those in the late 20th century shows that the number of blocking events and their duration have increased in the Northern and Southern Hemisphere. The intensity of blocking has decreased by about nine percent in the Northern Hemisphere, but there was little change in the intensity of Southern Hemisphere events. Additionally, there is little or no change in the genesis regions of blocking. An examination of variability related to El Niño and Southern Oscillation reveals that the variability found in the earlier work has reversed. This could either be the result of interdecadal variability or a change in the climate

    Studying Summer Season Drought in Western Russia

    No full text
    During the 2010 summer, a severe drought impacted Western Russia, including regions surrounding Moscow and Belgorod (about 700 km south of Moscow). The drought was accompanied by high temperatures. Moscow recorded 37.8°C (100°F) for the first time in over 130 years of record keeping. The record heat, high humidity, dry weather, and smoke from forest fires caused increased human mortality rates in the Moscow region during the summer. The excessive heat and humidity in Western Russia were the result of atmospheric blocking from June through mid-August. The NCAR-NCEP reanalyses were used to examine blocking in the Eastern European and Western Russia sector during the spring and summer seasons from 1970 to 2012. We found that drier years were correlated with stronger and more persistent blocking during the spring and summer seasons. During these years, the Moscow region was drier in the summer and Belgorod during the spring seasons. In the Moscow region, the drier summers were correlated with transitions from El Niño to La Niña, but the opposite was true in the Belgorod region. Synoptic flow regimes were then analyzed and support the contention that dry years are associated with more blocking and El Niño transitions

    The Dynamic Character of Northern Hemisphere Flow Regimes in a Near-Term Climate Change Projection

    Get PDF
    The dynamic character of an enstrophy-based diagnostic, previously used in the study of atmospheric blocking, is examined here, in near-term future simulations from the Institut Pierre Simon Laplace Climate Model version 4 (IPSL-CM4) and version 5 (IPSL-CM5) climate models of the Northern Hemisphere flow for moderate climate change scenarios. Previous research has shown that integrated regional enstrophy (IE) increases during blocking onset and decay, which is a reflection of planetary-scale instability. In addition, IE has been shown previously to increase during flow regime transitions in general, even those not associated with blocking events. Here, a 31-year IE diagnostic time series is examined for changes in short term (5–40 days) planetary-scale variability that may correspond flow regime changes in an increased carbon dioxide environment. The time-series analysis herein indicates that the IE diagnostic provides evidence for approximately 30–35 atmospheric flow regime transitions per year in a warmer climate, which is similar to that of the control run and the latest 30-year observed climate, as derived from re-analyses. This result has implications regarding the predictability of weather in a warmer world

    Integrated Regional Enstrophy and Block Intensity as a Measure of Kolmogorov Entropy

    Get PDF
    Enstrophy in a fluid relates to the dissipation tendency in a fluid that has use in studying turbulent flows. It also corresponds to vorticity as kinetic energy does to velocity. Earlier work showed that the integrated regional enstrophy (IRE) was related to the sum of the positive Lyapunov exponents. Lyapunov exponents are the characteristic exponent(s) of a dynamic system or a measure of the divergence or convergence of system trajectories that are initially close together. Relatively high values of IRE derived from an atmospheric flow field in the study of atmospheric blocking was identified with the onset or demise of blocking events, but also transitions of the large-scale flow in general. Kolmogorv–Sinai Entropy (KSE), also known as metric entropy, is related to the sum of the positive Lyapunov exponents as well. This quantity can be thought of as a measure of predictability (higher values, less predictability) and will be non-zero for a chaotic system. Thus, the measure of IRE is related to KSE as well. This study will show that relatively low (high) values of IRE derived from atmospheric flows correspond to a more stable (transitioning) large-scale flow with a greater (lesser) degree of predictability and KSE. The transition is least predictable and should be associated with higher IRE and KSE
    corecore