14 research outputs found

    The genomic architecture of NLRP7 is Alu rich and predisposes to disease-associated large deletions

    No full text
    NLRP7 is a major gene responsible for recurrent hydatidiform moles. Here, we report 11 novel NLRP7 protein truncating variants, of which five deletions of more than 1-kb. We analyzed the transcriptional consequences of four variants. We demonstrate that one large homozygous deletion removes NLRP7 transcription start site and results in the complete absence of its transcripts in a patient in good health besides her reproductive problem. This observation strengthens existing data on the requirement of NLRP7 only for female reproduction. We show that two other variants affecting the splice acceptor of exon 6 lead to its in-frame skipping while another variant affecting the splice donor site of exon 9 leads to an in-frame insertion of 54 amino acids. Our characterization of the deletion breakpoints demonstrated that most of the breakpoints occurred within Alu repeats and the deletions were most likely mediated by microhomology events. Our data define a hotspot of Alu instability and deletions in intron 5 with six different breakpoints and rearrangements. Analysis of NLRP7 genomic sequences for repetitive elements demonstrated that Alu repeats represent 48% of its intronic sequences and these repeats seem to have been inserted into the common NLRP2/7 primate ancestor before its duplication into two genes

    Localization and loss of coherence in molecular double-slit experiments

    Get PDF
    In molecular double-slit experiments, the interference between emitted core electrons of diatomic molecules gives rise to oscillations in the observed electron intensity. Here, we explore this behaviour for photoelectrons emitted from CO and N_2 by soft X-ray ionization in the molecular frame, and we argue that in addition to the undisturbed emission process, intramolecular scattering can lead to electron interference between the scattered and unscattered wave in two ways: two-centre interference between two spatially coherent emitters and one-centre self-interference. The latter is the signature of a loss of spatial coherence. The spatial scale over which the transition from two-centre to one-centre coherence occurs is the de Broglie wavelength of the scattered photoelectron in units of the bond length. These results highlight the fact that the molecular double slit is based on two independent uncertainty principles, Δp_xΔx and ΔEΔt, the second of which causes ongoing tunnelling between the two centres, even after the collapse of the electron wavefunction in real space
    corecore