5 research outputs found
Normal Butanol Additive in Methanol-Gasoline Blends Fired in a Spark Ignition Single Cylinder Engine : Effects on Combustion and Emission Characteristics
The effect of firing n-butanol additives in methanol-gasoline blends is compared with that of methanol-gasoline blends of total alcohol volume of 10 to 90 % in gasoline fuel (GF). The comparison was based on combustion and regulated remission characteristics. Tests were carried out on a BASF octane rating engine. Higher volatility and lower energy content of methanol-gasoline blends used were improved by the addition of n-butanol to the blends. Additives of n-butanol was recommended for the shortening combustion duration; reducing engine-out oxygen a benefit for downsizing the intake manifold and raising the heating value of fuel mixture.Добавление дозированной спиртовой добавки, которая используется в стандартных бензиновых топливах, ограничивается в связи с пониженной энергией (теплотой сгорания) спирта, однако энергия топлива возрастает при использовании в метанол-бензиновой смеси, помимо имеющейся, другой спиртовой добавки — н-бутанола. При этом благодаря пониженной летучести н-бутанола ослабляются проблемы с топливной системой двигателя, обусловленные повышенной летучестью метанол-бензиновых смесей. Цель работы состояла в определении преимуществ использования двойных спиртовых смесей с бензином (DAG) по сравнению с односпиртовыми смесями (SAG). Содержание спиртов в смеси превышало 30 % (об.). Воздействие горючих спиртовых добавок н-бутанола к метанол-бензиновым смесям (DAG) сравнивается с таковым при использовании метанол-бензиновых смесей (SAG) для случаев содержания спиртов от 10 до 90 % (об.) в бензиновом топливе. Сравнение основывалось на характеристиках горения по степени приближения к регламентируемым показателям вредных выбросов: NOx, CO, UHC (несгоревшие углеводороды). Испытания проводились на двигателе фирмы BASF с пересчетом мощности (по октану). Установлено, что выбросы UHC сокращались в большей степени при работе с SAG, чем при использовании DAG. Повышение доли спирта в бензиновом топливе сопровождается незначительным уменьшением выбросов NOx. При этом выбросы UHC для смесей минимальны, когда содержание NOx максимально, и наоборот. Установлено, что рост NOx ® (NOx)max при высоких температурах сопровождается минимизацией выбросов СО и UHC. Рекомендуется добавление н-бутанола для сокращения продолжительности горения и снижения содержания кислорода на выходе из двигателя как основа сокращения габаритов впускного (всасывающего) трубопровода и повышения теплоты сгорания топливной смеси.Додавання нормального бутанола до метанол-бензиновым сумішей, що спалюються в одноциліндровому двигуні з іскровим запаленням : Вплив на характеристики горіння та утворення шкідливих речовин Додавання дозованої спиртової домішки, яка використовується у стандартних бензинових паливах, обмежується у зв’язку зі зниженою енергією (теплотою згоряння) спирту, проте енергія палива зростає при використанні у метанол-бензиновій суміші, окрім тієї, що є, іншої спиртової домішки — н-бутанола. При цьому завдяки зниженій летючості н-бутанола ослаблюються проблеми з паливною системою двигуна, зумовлені підвищеною летючістю метанол-бензинових сумішей. Мета роботи полягала у визначенні переваг використання подвійних спиртових сумішей з бензином (DAG) у порівнянні з односпиртовими сумішами (SAG). Вміст спиртів у суміші перевищував 30 % (об.). Дія горючих спиртових домішок н-бутанола до метанол-бензинових сумішей (DAG) порівнюється з такою при використанні метанол-бензинових сумішей (SAG) для випадків вмісту спиртів від 10 до 90 % (об.) у бензиновому паливі. Порівняння грунтувалося на характеристиках горіння за мірою наближення до регламентованих показників шкідливих викидів: NOx, CO, UHC (незгорілі вуглеводні). Випробування проводилися на двигуні фірми BASF з перерахунком потужності (за октаном). Встановлено, що викиди UHC скорочувалися більшою мірою при роботі з SAG, ніж при використанні DAG. Підвищення долі спирту у бензиновому паливі су-проводжується незначним зменшенням викидів NOx. При цьому викиди UHC для сумішей мінімальні, коли вміст NOx максимальний, та навпаки. Встановлено, що зростання NOx → (NOx)max при високих температурах супроводжується мінімізацією викидів СО та UHC. Рекомендовано додавання н-бутанола для скорочення тривалості горіння та зниження вмісту кисню на виході з двигуна як основа скорочення габаритів впускного (всмоктуючого) трубопроводу та підвищення теплоти згоряння паливної суміші
n-Butanol-Diesel (D2) Blend Fired in a Turbo-Charged Compression Ignition Engine: Performance and Combustion Characteristics
The use of biofuels that include n-butanol in diesel fuel (DF) is attracting attention in the search for the reduction of emissions into the environment due to the burning of fossil fuel. The performance and combustion characteristics were evaluated in this study using blends B5, B10, and B20 (B5: 5% n-butanol and 95% DF) in a turbo-charged direct injection compression ignition engine. In the n-butanol diesel studies, a comparison was made with other studies that also included biodiesel in order to determine how suitable n-butanol-diesel blends were to use in internal combustion engines. Combustion characteristics of B20 (n-butanol 20% and 80% DF) improved when the study was compared with a similar study that included 40% biodiesel added to B20. A higher value of the standard deviation for DF than the blends was observed from the standard deviation diagram, indicating a more stable combustion process for the blends than DF. Soot reduction relative to DF at 1500 rpm at 75% load for B05, B10, and B20 mixtures was 55.5, 77.8, and 85.1%, respectively. This reduction is a significant advantage of blending DF with smaller shared volumes of bioalcohol
Combustion and Emission Characteristics of Blends: -n-Butanol- Diesel (D2); and Dual Alcohols: n-Butanol-Methanol with Gasoline in Internal Combustion Engines
A study of the effects of oxygenated alcohol/gasoline/diesel fuel blends on performance, combustion, and emission characteristics in conventional reciprocating engines is reported. On the one hand, in alcohol-gasoline blends, dual alcohols-gasoline blends have not yet been sufficiently proven as suitable alternatives to single alcohol-gasoline blends in engines as far as performance is concerned. On the other hand, n-butanol-diesel, although it has a better miscibility factor in diesel than methanol or ethanol, is limited with regard to extensive application in the diesel engines due to its low cetane number. Engine performance was compared using single alcohol-gasoline and dual alcohol-gasoline blends, where the dual blends were constrained to meet the vapor issues regarding fuels and regulations. The blends were selected in terms of a combination by volume of one being higher alcohol (n-butanol) and the other, lower alcohol (methanol). The engines used for this study included a single-cylinder and a four-cylinder, naturally aspirated, four-stroke spark ignition engines and a four-cylinder, four-stroke compression ignition turbocharged diesel engine. In the n-butanol-diesel studies, a comparison was made with other studies in order to determine how suitable n-butanol-diesel blends were across the biofuel family such as the biodiesel-ethanol-diesel blends. The findings were as follows: The dual alcohols-gasoline blends performed better than the single alcohol-gasoline blends depending on certain compositional ratios of the alcohols in gasoline regardless of vapor pressure consideration. The n-butanol/diesel alcohol blend (B5, B10, and B20, where B5 represents 5% n-butanol and 95% diesel) significantly reduced the regulated emissions in a turbocharged engine compared to other studies using biodiesel-diesel blends. The significant decrease in NOx, CO emissions, and reduction of unburned hydrocarbons content using n-butanol/diesel fuel (DF) blends were found experimentally. The use of dual alcohol /gasoline blends was beneficial due to their shorter combustion duration in crank angles and their higher-energy content compared with single alcohol-gasoline blends. The n-butanol/diesel blend fired in the diesel engine showed a higher brake thermal efficiency and improved brake specific fuel consumption compared to the study by others where ethanoldiesel and methanoldiesel blends were used
Effect of the use of waste vegetable oil based biodiesel on the landscape in diesel engines
Petroleum-based fuels are now widely known as environmentally unfriendly because of non-renewable supplies and its contribution to environmental pollution. The challenge, therefore is to ensure appropriate energy supplies at minimum cost. There is an increasing energy demand in the world and nowadays it can be fulfilled only on the basis of fossil fuels. Therefore, it is necessary to evolve a renewable energy source with lower environmental impact. One alternative solution can be oils of plant origin, like vegetable oils and non-edible oils. With waste vegetable oil methyl ester, biofuel dependency can be decreased. Therefore, the aim of this research paper is to analyze the economic and environmental effect of waste vegetable oil methyl ester compared to fossil fuels. In some cases only the age of vehicles could raise burdens to biofuel utilization in road vehicles. Transport and energy policy – on a large scale – can play an important role in fuel consumption. Author is aware that waste vegetable oil methyl ester can play only a limited role in biofuel substitution
Research on the Combustion, Energy and Emission Parameters of Various Concentration Blends of Hydrotreated Vegetable Oil Biofuel and Diesel Fuel in a Compression-Ignition Engine
This article presents our research results on the physical-chemical and direct injection diesel engine performance parameters when fueled by pure diesel fuel and retail hydrotreated vegetable oil (HVO). This fuel is called NexBTL by NESTE, and this renewable fuel blends with a diesel fuel known as Pro Diesel. A wide range of pure diesel fuel and NexBTL100 blends have been tested and analyzed: pure diesel fuel, pure NexBTL, NexBTL10, NexBTL20, NexBTL30, NexBTL40, NexBTL50, NexBTL70 and NexBTL85. The energy, pollution and in-cylinder parameters were analyzed under medium engine speed (n = 2000 and n = 2500 rpm) and brake torque load regimes (30–120 Nm). AVL BOOST software was used to analyze the heat release characteristics. The analysis of brake specific fuel consumption showed controversial results due to the lower density of NexBTL. The mass fuel consumption decreased by up to 4%, and the volumetric consumption increased by up to approximately 6%. At the same time, the brake thermal efficiency mainly increased by approximately 0.5–1.4%. CO, CO2, NOx, HC and SM were analyzed, and the change in CO was negligible when increasing NexBTL in the fuel blend. Higher SM reduction was achieved while increasing the percentage of NexBTL in the blends.This article belongs to the Special Issue Biofuels for Internal Combustion EngineThe Higher Education Excellence Program of the Ministry of Human Capacities in the biotechnology
research area of the Budapest University of Technology and Economics (BME FIKP-BIO)