439 research outputs found
New model for system of mesoscopic Josephson contacts
Quantum fluctuations of the phases of the order parameter in 2D arrays of
mesoscopic Josephson junctions and their effect on the destruction of
superconductivity in the system are investigated by means of a quantum-cosine
model that is free of the incorrect application of the phase operator. The
proposed model employs trigonometric phase operators and makes it possible to
study arrays of small superconducting granules, pores filled with superfluid
helium, or Josephson junctions in which the average number of particles
(effective bosons, He atoms, and so on) is small, and the standard approach
employing the phase operator and the particle number operator as conjugate ones
is inapplicable. There is a large difference in the phase diagrams between
arrays of macroscopic and mesoscopic objects for and ( is
the characteristic interaction energy of the particle per granule and is
the Josephson coupling constant). Reentrant superconductivity phenomena are
discussed.Comment: 4 pages, 3 Postscript figure
The Specificity of the Differential Regulation of Economic Integration in the Context of Contemporary Labor Migration
The issues of integration in the modern world become relevant in the rapidly changing geopolitical realities, and the strategic imperative of time for the vast majority of States. Today in accordance with the principle of multi-level and various-speed integration on Eurasian space are successfully developing various integration formats. They complement each other to provide a wide partnership platform. The authors argue that the main participants in labor migration in the post-Soviet space reflect the actual path of social and economic interaction worked out historically. Common historical fate and similar paths of development, similar mental conceptosphere steel trigger mechanism for the implementation of the Eurasian Economic Union. Researches show that labour of migrant workers from different countries is widely distributed in different sectors of Russia's economy, their labour is used almost everywhere. In many industries a mechanism was established where officially Russian workers are registered at enterprises, but foreign migrant workers are actually employed. Russians began to actively move, migration processes have increased substantially, new forms of temporary migration. These processes have become more active throughout Eurasia. The authors analyze the causes and characteristics of migration in the Eurasian economic union at the present stage.
DOI: 10.5901/mjss.2015.v6n3p9
Transverse-target-spin asymmetry in exclusive -meson electroproduction
Hard exclusive electroproduction of mesons is studied with the
HERMES spectrometer at the DESY laboratory by scattering 27.6 GeV positron and
electron beams off a transversely polarized hydrogen target. The amplitudes of
five azimuthal modulations of the single-spin asymmetry of the cross section
with respect to the transverse proton polarization are measured. They are
determined in the entire kinematic region as well as for two bins in photon
virtuality and momentum transfer to the nucleon. Also, a separation of
asymmetry amplitudes into longitudinal and transverse components is done. These
results are compared to a phenomenological model that includes the pion pole
contribution. Within this model, the data favor a positive
transition form factor.Comment: DESY Report 15-14
Beam-helicity asymmetries for single-hadron production in semi-inclusive deep-inelastic scattering from unpolarized hydrogen and deuterium targets
A measurement of beam-helicity asymmetries for single-hadron production in
deep-inelastic scattering is presented. Data from the scattering of 27.6 GeV
electrons and positrons off gaseous hydrogen and deuterium targets were
collected by the HERMES experiment. The asymmetries are presented separately as
a function of the Bjorken scaling variable, the hadron transverse momentum, and
the fractional energy for charged pions and kaons as well as for protons and
anti-protons. These asymmetries are also presented as a function of the three
aforementioned kinematic variables simultaneously
The HERMES Dual-Radiator Ring Imaging Cerenkov Detector
The construction and use of a dual radiator Ring Imaging Cerenkov(RICH)
detector is described. This instrument was developed for the HERMES experiment
at DESY which emphasizes measurements of semi-inclusive deep-inelastic
scattering. It provides particle identification for pions, kaons, and protons
in the momentum range from 2 to 15 GeV, which is essential to these studies.
The instrument uses two radiators, C4F10, a heavy fluorocarbon gas, and a wall
of silica aerogel tiles. The use of aerogel in a RICH detector has only
recently become possible with the development of clear, large homogeneous and
hydrophobic aerogel. A lightweight mirror was constructed using a newly
perfected technique to make resin-coated carbon-fiber surfaces of optical
quality. The photon detector consists of 1934 photomultiplier tubes for each
detector half, held in a soft steel matrix to provide shielding against the
residual field of the main spectrometer magnet.Comment: 25 pages, 23 figure
Longitudinal double-spin asymmetries in semi-inclusive deep-inelastic scattering of electrons and positrons by protons and deuterons
A comprehensive collection of results on longitudinal double-spin asymmetries is presented for charged pions and kaons produced in semi-inclusive deep-inelastic scattering of electrons and positrons on the proton and deuteron, based on the full HERMES data set. The dependence of the asymmetries on hadron transverse momentum and azimuthal angle extends the sensitivity to the flavor structure of the nucleon beyond the distribution functions accessible in the collinear framework. No strong dependence on those variables is observed. In addition, the hadron charge-difference asymmetry is presented, which under certain model assumptions provides access to the helicity distributions of valence quarks
Bose-Einstein correlations in hadron-pairs from lepto-production on nuclei ranging from hydrogen to xenon
Bose-Einstein correlations of like-sign charged hadrons produced in
deep-inelastic electron and positron scattering are studied in the HERMES
experiment using nuclear targets of H, H, He, He, N, Ne, Kr,
and Xe. A Gaussian approach is used to parametrize a two-particle correlation
function determined from events with at least two charged hadrons of the same
sign charge. This correlation function is compared to two different empirical
distributions that do not include the Bose-Einstein correlations. One
distribution is derived from unlike-sign hadron pairs, and the second is
derived from mixing like-sign pairs from different events. The extraction
procedure used simulations incorporating the experimental setup in order to
correct the results for spectrometer acceptance effects, and was tested using
the distribution of unlike-sign hadron pairs. Clear signals of Bose-Einstein
correlations for all target nuclei without a significant variation with the
nuclear target mass are found. Also, no evidence for a dependence on the
invariant mass W of the photon-nucleon system is found when the results are
compared to those of previous experiments
DNA fragments binding CTCF in vitro and in vivo are capable of blocking enhancer activity
<p>Abstract</p> <p>Background</p> <p>Earlier we identified ten 100-300-bp long CTCF-binding DNA fragments selected earlier from a 1-Mb human chromosome 19 region. Here the positive-negative selection technique was used to check the ability of CTCF-binding human genomic fragments to block enhancer-promoter interaction when inserted into the genome.</p> <p>Results</p> <p>Ten CTCF-binding DNA fragments were inserted between the CMV enhancer and CMV minimal promoter driving the herpes simplex virus thymidine kinase (HSV<it>-tk</it>) gene in a vector expressing also the <it>neo</it><sup>R </sup>gene under a separate promoter. The constructs were then integrated into the genome of CHO cells, and the cells resistant to neomycin and ganciclovir (positive-negative selection) were picked up, and their DNAs were PCR analyzed to confirm the presence of the fragments between the enhancer and promoter in both orientations.</p> <p>Conclusions</p> <p>We demonstrated that all sequences identified by their CTCF binding both <it>in vitro </it>and <it>in vivo </it>had enhancer-blocking activity when inserted between the CMV minimal promoter and enhancer in stably transfected CHO cells.</p
The -dependence of the generalised Gerasimov-Drell-Hearn integral for the deuteron, proton and neutron
The Gerasimov-Drell-Hearn (GDH) sum rule connects the anomalous contribution
to the magnetic moment of the target nucleus with an energy-weighted integral
of the difference of the helicity-dependent photoabsorption cross sections. The
data collected by HERMES with a deuterium target are presented together with a
re-analysis of previous measurements on the proton. This provides a measurement
of the generalised GDH integral covering simultaneously the nucleon-resonance
and the deep inelastic scattering regions. The contribution of the
nucleon-resonance region is seen to decrease rapidly with increasing . The
DIS contribution is sizeable over the full measured range, even down to the
lowest measured . As expected, at higher the data are found to be in
agreement with previous measurements of the first moment of . From data on
the deuteron and proton, the GDH integral for the neutron has been derived and
the proton--neutron difference evaluated. This difference is found to satisfy
the fundamental Bjorken sum rule at GeV.Comment: 12 pages, 10 figure
- …