231 research outputs found

    Enhancing Bremsstrahlung Production From Ultraintense Laser-Solid Interactions With Front Surface Structures

    Full text link
    We report the results of a combined study of particle-in-cell and Monte Carlo modeling that investigates the production of Bremsstrahlung radiation produced when an ultraintense laser interacts with a tower-structured target. These targets are found to significantly narrow the electron angular distribution as well as produce significantly higher energies. These features combine to create a significant enhancement in directionality and energy of the Bremstrahlung radiation produced by a high-Z converter target. These studies employ short-pulse, high intensity laser pulses, and indicate that novel target design has potential to greatly enhance the yield and narrow the directionality of high energy electrons and γ\gamma-rays. We find that the peak γ\gamma-ray brightness for this source is 6.0×\times1019^{19} s−1mm−2mrad−2{\rm s^{-1}mm^{-2}mrad^{-2}} at 10MeV and 1.4×\times1019^{19} s−1mm−2mrad−2{\rm s^{-1}mm^{-2}mrad^{-2}} at 100MeV (0.1%\% bandwidth).Comment: arXiv admin note: text overlap with arXiv:1310.328

    Fast Ignition Experimental and Theoretical Studies

    Get PDF
    We are becoming dependent on energy more today than we were a century ago, and with increasing world population and booming economies, sooner or later our energy sources will be exhausted. Moreover, our economy and welfare strongly depends on foreign oil and in the shadow of political uncertainties, there is an urgent need for a reliable, safe, and cheap energy source. Thermonuclear fusion, if achieved, is that source of energy which not only will satisfy our demand for today but also for centuries to come. Today, there are two major approaches to achieve fusion: magnetic confinement fusion (MFE) and inertial confinement fusion (ICF). This dissertation explores the inertial confinement fusion using the fast ignition concept. Unlike the conventional approach where the same laser is used for compression and ignition, in fast ignition separate laser beams are used. This dissertation addresses three very important topics to fast ignition inertial confinement fusion. These are laser-to-electron coupling efficiency, laser-generated electron beam transport, and the associated isochoric heating. First, an integrated fast ignition experiment is carried out with 0.9 kJ of energy in the compression beam and 70 J in the ignition beam. Measurements of absolute K{sub {alpha}} yield from the imploded core revealed that about 17% of the laser energy is coupled to the suprathermal electrons. Modeling of the transport of these electrons and the associated isochoric heating, with the previously determined laser-to-electron conversion efficiency, showed a maximum target temperature of 166 eV at the front where the electron flux is higher and the density is lower. The contribution of the potential, induced by charge separation, in opposing the motion of the electrons was moderate. Second, temperature sensitivity of Cu K{sub {alpha}} imaging efficiency using a spherical Bragg reflecting crystal is investigated. It was found that due to the shifting and broadening of the K{sub {alpha}} line, with increasing temperature, both the brightness and the pattern of K{sub {alpha}} intensity are affected. Finally, x-ray spectroscopy of a 500 J 0.7 ps laser-solid interactions showed the formation of a hot surface layer({approx} 1 {micro}m) at the front of the target. PIC simulations confirm surface heating

    Low-molecular-weight cyclin E: the missing link between biology and clinical outcome

    Get PDF
    Cyclin E, a key mediator of transition during the G(1)/S cellular division phase, is deregulated in a wide variety of human cancers. Our group recently reported that overexpression and generation of low-molecular-weight (LMW) isoforms of cyclin E were associated with poor clinical outcome among breast cancer patients. However, the link between LMW cyclin E biology in mediating a tumorigenic phenotype and clinical outcome is unknown. To address this gap in knowledge, we assessed the role of LMW isoforms in breast cancer cells; we found that these forms of cyclin E induced genomic instability and resistance to p21, p27, and antiestrogens in breast cancer. These findings suggest that high levels of LMW isoforms of cyclin E not only can predict failure to endocrine therapy but also are true prognostic indicators because of their influence on cell proliferation and genetic instability

    LMW-E/CDK2 Deregulates Acinar Morphogenesis, Induces Tumorigenesis, and Associates with the Activated b-Raf-ERK1/2-mTOR Pathway in Breast Cancer Patients

    Get PDF
    Elastase-mediated cleavage of cyclin E generates low molecular weight cyclin E (LMW-E) isoforms exhibiting enhanced CDK2–associated kinase activity and resistance to inhibition by CDK inhibitors p21 and p27. Approximately 27% of breast cancers express high LMW-E protein levels, which significantly correlates with poor survival. The objective of this study was to identify the signaling pathway(s) deregulated by LMW-E expression in breast cancer patients and to identify pharmaceutical agents to effectively target this pathway. Ectopic LMW-E expression in nontumorigenic human mammary epithelial cells (hMECs) was sufficient to generate xenografts with greater tumorigenic potential than full-length cyclin E, and the tumorigenicity was augmented by in vivo passaging. However, cyclin E mutants unable to interact with CDK2 protected hMECs from tumor development. When hMECs were cultured on Matrigel, LMW-E mediated aberrant acinar morphogenesis, including enlargement of acinar structures and formation of multi-acinar complexes, as denoted by reduced BIM and elevated Ki67 expression. Similarly, inducible expression of LMW-E in transgenic mice generated hyper-proliferative terminal end buds resulting in enhanced mammary tumor development. Reverse-phase protein array assay of 276 breast tumor patient samples and cells cultured on monolayer and in three-dimensional Matrigel demonstrated that, in terms of protein expression profile, hMECs cultured in Matrigel more closely resembled patient tissues than did cells cultured on monolayer. Additionally, the b-Raf-ERK1/2-mTOR pathway was activated in LMW-E–expressing patient samples, and activation of this pathway was associated with poor disease-specific survival. Combination treatment using roscovitine (CDK inhibitor) plus either rapamycin (mTOR inhibitor) or sorafenib (a pan kinase inhibitor targeting b-Raf) effectively prevented aberrant acinar formation in LMW-E–expressing cells by inducing G1/S cell cycle arrest. LMW-E requires CDK2–associated kinase activity to induce mammary tumor formation by disrupting acinar development. The b-Raf-ERK1/2-mTOR signaling pathway is aberrantly activated in breast cancer and can be suppressed by combination treatment with roscovitine plus either rapamycin or sorafenib

    Effect of target material on fast-electron transport and resistive collimation.

    Get PDF
    The effect of target material on fast-electron transport is investigated using a high-intensity (0.7 ps, 1020  W/cm2{10}^{20}\text{ }\text{ }\mathrm{W}/{\mathrm{cm}}^{2}) laser pulse irradiated on multilayered solid Al targets with embedded transport (Au, Mo, Al) and tracer (Cu) layers, backed with millimeter-thick carbon foils to minimize refluxing. We consistently observed a more collimated electron beam (36% average reduction in fast-electron induced Cu K\ensuremath{\alpha} spot size) using a high- or mid-ZZ (Au or Mo) layer compared to Al. All targets showed a similar electron flux level in the central spot of the beam. Two-dimensional collisional particle-in-cell simulations showed formation of strong self-generated resistive magnetic fields in targets with a high-ZZ transport layer that suppressed the fast-electron beam divergence; the consequent magnetic channels guided the fast electrons to a smaller spot, in good agreement with experiments. These findings indicate that fast-electron transport can be controlled by self-generated resistive magnetic fields and may have important implications to fast ignition
    • …
    corecore