1,022 research outputs found

    Intensity correlations and mesoscopic fluctuations of diffusing photons in cold atoms

    Full text link
    We study the angular correlation function of speckle patterns that result from multiple scattering of photons by cold atomic clouds. We show that this correlation function becomes larger than the value given by Rayleigh law for classical scatterers. These large intensity fluctuations constitute a new mesoscopic interference effect specific to atom-photon interactions, that could not be observed in other systems such as weakly disordered metals. We provide a complete description of this behavior and expressions that allow for a quantitative comparison with experiments.Comment: 4 pages, 2 figure

    Non-Gaussian fluctuations of mesoscopic persistent currents

    Full text link
    The persistent current in an ensemble of normal-metal rings shows Gaussian distributed sample-to-sample fluctuations with non-Gaussian corrections, which are precursors of the transition into the Anderson localized regime. We here report a calculation of the leading non-Gaussian correction to the current autocorrelation function, which is of third order in the current. Although the third-order correlation function is small, inversely proportional to the dimensionless conductance gg of the ring, the mere fact that it is nonzero is remarkable, since it is an odd moment of the current distribution.Comment: 4+ pages, 2 figure

    Near-field interactions and non-universality in speckle patterns produced by a point source in a disordered medium

    Full text link
    A point source in a disordered scattering medium generates a speckle pattern with non-universal features, giving rise to the so-called C_0 correlation. We analyze theoretically the relationship between the C_0 correlation and the statistical fluctuations of the local density of states, based on simple arguments of energy conservation. This derivation leads to a clear physical interpretation of the C_0 correlation. Using exact numerical simulations, we show that C_0 is essentially a correlation resulting from near-field interactions. These interactions are responsible for the non-universality of C_0, that confers to this correlation a huge potential for sensing and imaging at the subwavelength scale in complex media

    Three-dimensionality in quasi-two dimensional flows: recirculations and barrel effects

    Get PDF
    A scenario is put forward for the appearance of three-dimensionality both in quasi-2D rotating flows and quasi-2D magnetohydrodynamic (MHD) flows. We show that 3D recirculating flows and currents originate in wall boundary layers and that, unlike in ordinary hydrodynamic flows, they cannot be ignited by confinement alone. They also induce a second form of three-dimensionality with quadratic variations of velocities and current across the channel. This scenario explains both the common tendency of these flows to two-dimensionality and the mechanisms of the recirculations through a single formal analogy covering a wide class of flow including rotating and MHD flows. These trans-disciplinary effects are thus active in atmospheres, oceans or the cooling blankets of nuclear fusion reactors.Comment: 6 pages, 1 Figur

    Vortex nucleation through edge states in finite Bose-Einstein condensates

    Full text link
    We study the vortex nucleation in a finite Bose-Einstein condensate. Using a set of non-local and chiral boundary conditions to solve the Schro¨\ddot{o}dinger equation of non-interacting bosons in a rotating trap, we obtain a quantitative expression for the characteristic angular velocity for vortex nucleation in a condensate which is found to be 35% of the transverse harmonic trapping frequency.Comment: 24 pages, 8 figures. Both figures and the text have been revise

    An electronic Mach-Zehnder interferometer in the Fractional Quantum Hall effect

    Full text link
    We compute the interference pattern of a Mach-Zehnder interferometer operating in the fractional quantum Hall effect. Our theoretical proposal is inspired by a remarkable experiment on edge states in the Integer Quantum Hall effect (IQHE). The Luttinger liquid model is solved via two independent methods: refermionization at nu=1/2 and the Bethe Ansatz solution available for Laughlin fractions. The current differs strongly from that of single electrons in the strong backscattering regime. The Fano factor is periodic in the flux, and it exhibits a sharp transition from sub-Poissonian (charge e/2) to Poissonian (charge e) in the neighborhood of destructive interferences
    • …
    corecore