24 research outputs found

    Reduced fronto-striatal volume in attention-deficit/hyperactivity disorder in two cohorts across the lifespan

    Get PDF
    Attention-Deficit/Hyperactivity Disorder (ADHD) has been associated with altered brain anatomy in neuroimaging studies. However, small and heterogeneous study samples, and the use of region-of-interest and tissue-specific analyses have limited the consistency and replicability of these effects. We used a data-driven multivariate approach to investigate neuroanatomical features associated with ADHD in two independent cohorts: the Dutch NeuroIMAGE cohort (n = 890, 17.2 years) and the Brazilian IMpACT cohort (n = 180, 44.2 years). Using independent component analysis of whole-brain morphometry images, 375 neuroanatomical components were assessed for association with ADHD. In both discovery (corrected-p = 0.0085) and replication (p = 0.032) cohorts, ADHD was associated with reduced volume in frontal lobes, striatum, and their interconnecting white-matter. Current results provide further evidence for the role of the fronto-striatal circuit in ADHD in children, and for the first time show its relevance to ADHD in adults. The fact that the cohorts are from different continents and comprise different age ranges highlights the robustness of the findings

    Longitudinal changes of ADHD symptoms in association with white matter microstructure: A tract-specific fixel-based analysis

    Get PDF
    Background: Variation in the longitudinal course of childhood attention deficit/hyperactivity disorder (ADHD) coincides with neurodevelopmental maturation of brain structure and function. Prior work has attempted to determine how alterations in white matter (WM) relate to changes in symptom severity, but much of that work has been done in smaller cross-sectional samples using voxel-based analyses. Using standard diffusion-weighted imaging (DWI) methods, we previously showed WM alterations were associated with ADHD symptom remission over time in a longitudinal sample of probands, siblings, and unaffected individuals. Here, we extend this work by further assessing the nature of these changes in WM microstructure by including an additional follow-up measurement (aged 18 – 34 years), and using the more physiologically informative fixel-based analysis (FBA). Methods: Data were obtained from 139 participants over 3 clinical and 2 follow-up DWI waves, and analyzed using FBA in regions-of-interest based on prior findings. We replicated previously reported significant models and extended them by adding another time-point, testing whether changes in combined ADHD and hyperactivity-impulsivity (HI) continuous symptom scores are associated with fixel metrics at follow-up. Results: Clinical improvement in HI symptoms over time was associated with more fiber density at follow-up in the left corticospinal tract (lCST) (tmax = 1.092, standardized effect[SE] = 0.044, pFWE = 0.016). Improvement in combined ADHD symptoms over time was associated with more fiber cross-section at follow-up in the lCST (tmax = 3.775, SE = 0.051, pFWE = 0.019). Conclusions: Aberrant white matter development involves both lCST micro- and macrostructural alterations, and its path may be moderated by preceding symptom trajectory

    Shocks and entrepreneurship:A study of career shocks among newly graduated entrepreneurs

    No full text
    Purpose – The purpose of this paper is to explore the career shocks that young, newly graduated entrepreneurs experience in the process of starting a business. Design/methodology/approach – The study adopted a qualitative approach, drawing upon 25 semi-structured interviews with entrepreneurs who recently graduated from university (up to the age of 30) in different European countries. Findings – The analysis identifies several career shocks that can confront entrepreneurs before and after starting a business and reveals how these shocks influence graduates’ decisions to become and continue to be an entrepreneur. Research limitations/implications – The study sheds light on the diverse nature of career shocks and the importance of integrating agency concepts and environmental influences in career research. It identifies important factors relevant for school-to-work transition research and complements work in entrepreneurship research on necessity and opportunity entrepreneurship, push and pull motives, and entrepreneurial intentions. Practical implications – Organizations can use the findings to attract and retain young entrepreneurial employees, while higher education organizations can use the findings to better prepare students for a successful transition into entrepreneurship, whether in the corporate or independent form. Originality/value – The paper integrates the concept of career shocks with literature on entrepreneurship and offers a categorization of career shocks in the pathway to entrepreneurship

    Relations between hemispheric asymmetries of grey matter and auditory processing of spoken syllables in 281 healthy adults

    No full text
    Most people have a right-ear advantage for the perception of spoken syllables, consistent with left hemisphere dominance for speech processing. However, there is considerable variation, with some people showing left-ear advantage. The extent to which this variation is reflected in brain structure remains unclear. We tested for relations between hemispheric asymmetries of auditory processing and of grey matter in 281 adults, using dichotic listening and voxel-based morphometry. This was the largest study of this issue to date. Per-voxel asymmetry indexes were derived for each participant following registration of brain magnetic resonance images to a template that was symmetrized. The asymmetry index derived from dichotic listening was related to grey matter asymmetry in clusters of voxels corresponding to the amygdala and cerebellum lobule VI. There was also a smaller, non-significant cluster in the posterior superior temporal gyrus, a region of auditory cortex. These findings contribute to the mapping of asymmetrical structure–function links in the human brain and suggest that subcortical structures should be investigated in relation to hemispheric dominance for speech processing, in addition to auditory cortex. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00429-021-02220-z

    Dorsomedial prefrontal cortex mediates the impact of serotonin transporter linked polymorphic region genotype on anticipatory threat reactions

    No full text
    Background Excessive anticipatory reactions to potential future adversity are observed across a range of anxiety disorders, but the neurogenetic mechanisms driving interindividual differences are largely unknown. We aimed to discover and validate a gene-brain-behavior pathway by linking presumed genetic risk for anxiety-related psychopathology, key neural activity involved in anxious anticipation, and resulting aversive emotional states. Methods The functional neuroanatomy of aversive anticipation was probed through functional magnetic resonance imaging in two independent samples of healthy subjects (n = 99 and n = 69), and we studied the influence of genetic variance in the serotonin transporter linked polymorphic region (5-HTTLPR). Skin conductance and startle data served as objective psychophysiological indices of the intensity of individuals’ anticipatory responses to potential threat. Results Threat cues signaling risk of future electrical shock activated the dorsomedial prefrontal cortex (dmPFC), anterior insula, bed nucleus of the stria terminalis, thalamus, and midbrain consistently across both samples. Threat-related dmPFC activation was enhanced in 5-HTTLPR short allele carriers in sample 1 and this effect was validated in sample 2. Critically, we show that this region mediates the increase in anticipatory psychophysiological reactions in short allele carriers indexed by skin conductance (experiment 1) and startle reactions (experiment 2). Conclusions The converging results from these experiments demonstrate that innate 5-HTTLPR linked variation in dmPFC activity predicts psychophysiological responsivity to pending threats. Our results reveal a neurogenetic pathway mediating interindividual variability in anticipatory responses to threat and yield a novel mechanistic account for previously reported associations between genetic variability in serotonin transporter function and stress-related psychopathology

    Fronto-striatal glutamate in children with Tourette's disorder and attention-deficit/hyperactivity disorder

    Get PDF
    Objective: Both Tourette's disorder (TD) and attention-deficit/hyperactivity disorder (ADHD) have been related to abnormalities in glutamatergic neurochemistry in the fronto-striatal circuitry. TD and ADHD often co-occur and the neural underpinnings of this co-occurrence have been insufficiently investigated in prior studies. Method: We used proton magnetic resonance spectroscopy (1H-MRS) in children between 8 and 12 years of age (TD n = 15, ADHD n = 39, TD + ADHD n = 29, and healthy controls n = 53) as an in vivo method of evaluating glutamate concentrations in the fronto-striatal circuit. Spectra were collected on a 3 Tesla Siemens scanner from two voxels in each participant: the anterior cingulate cortex (ACC) and the left dorsal striatum. LC-model was used to process spectra and generate glutamate concentrations in institutional units. A one-way analysis of variance was performed to determine significant effects of diagnostic group on glutamate concentrations. Results: We did not find any group differences in glutamate concentrations in either the ACC (F(3132) = 0.97, p = 0.41) or striatum (F(3121) = 0.59, p = 0.62). Furthermore, variation in glutamate concentration in these regions was unrelated to age, sex, medication use, IQ, tic, or ADHD severity. Obsessive–compulsive (OC) symptoms were positively correlated with ACC glutamate concentration within the participants with TD (rho = 0.35, puncorrected = 0.02). Conclusion: We found no evidence for glutamatergic neuropathology in TD or ADHD within the fronto-striatal circuits. However, the correlation of OC-symptoms with ACC glutamate concentrations suggests that altered glutamatergic transmission is involved in OC-symptoms within TD, but this needs further investigation

    Multi-modal imaging investigation of anterior cingulate cortex cytoarchitecture in neurodevelopment

    Get PDF
    Multi-modal imaging may improve our understanding of the relationship between cortical morphology and cytoarchitecture. To this end we integrated the analyses of several magnetic resonance imaging (MRI) and spectroscopy (MRS) metrics within the anterior cingulate cortex (ACC). Considering the ACCs role in neurodevelopmental disorders, we also investigated the association between neuropsychiatric symptoms and the various metrics. T1 and diffusion weighted MRI and H-1-MRS (ACC voxel) data along with phenotypic information were acquired from children (8-12 years) with various neurodevelopmental disorders (n=95) and healthy controls (n=50). From within the MRS voxel mean diffusivity (MD) of the grey matter fraction, intrinsic curvature (IC) of the surface and concentrations of creatine, choline, glutamate, N-acetylaspartate and myo-inositol were extracted. Linear models were used to investigate if the neurochemicals predicted MD and IC or if MD predicted IC. Finally, measures of various symptom severities were included to determine the influence of symptoms of neurodevelopmental disorders. All five neurochemicals inversely predicted MD (all p(uncorrected)0.05). Severity of autism symptoms related positively to MD (p(uncorrected) =0.002, beta=0.39). Our findings support the notion that the neurochemicals relate to cytoarchitecture within the cortex. Additionally, we showed that autism symptoms across participants relate to the ACC cytoarchitecture. (C) 2017 Elsevier B.V. and ECNP. All rights reserved

    Basal Ganglia Structure in Tourette's Disorder and/or Attention-Deficit/Hyperactivity Disorder

    Get PDF
    Background: Tourette's disorder and attention-deficit/hyperactivity disorder often co-occur and have both been associated with structural variation of the basal ganglia. However, findings are inconsistent and comorbidity is often neglected. Methods: T1-weighted magnetic resonance images from children (n = 141, 8 to 12 years) with Tourette's disorder and/or attention-deficit/hyperactivity disorder and controls were processed with the Oxford Centre for Functional MRI [Magnetic resonance imaging] of the Brain (FMRIB) integrated registration and segmentation tool to determine basal ganglia nuclei volume and shape. Across all participants, basal ganglia nuclei volume and shape were estimated in relation to Tourette's disorder (categorical), attention-deficit/hyperactivity disorder severity (continuous across all participants), and their interaction. Results: The analysis revealed no differences in basal ganglia nuclei volumes or shape between children with and without Tourette's disorder, no association with attention-deficit/hyperactivity disorder severity, and no interaction between the two. Conclusion: We found no evidence that Tourette's disorder, attention-deficit/hyperactivity disorder severity, or a combination thereof are associated with structural variation of the basal ganglia in 8-to 12-year-old patients. (C) 2016 International Parkinson and Movement Disorder Society
    corecore