533 research outputs found

    Light-weight and flexible Ni-doped CuO (Ni:CuO) thin films grown using the cost-effective SILAR method for future technological requests

    Get PDF
    Products based on nanostructured flexible thin films, which are anticipated to make their way into our lifetimes in the near future. Therefore, nanostructured metal-oxide thin-film materials grown on flexible substrates are anticipated to meet emerging technological requests. In this article, we present a promising light-weight and flexible thin-film material using un-doped and Ni-doped CuO samples. Ni:CuO flexible thin-film materials were fabricated by using the cost-effective SILAR method on cellulose acetate substrates and the effects of both Ni doping and bending on the change in electrical and optoelectronic performances were investigated. It is observed that Ni doping has a great impact on the main physical properties of flexible CuO samples. The optical bandgap value of the un-doped CuO film improves with increasing Ni ratio in the growth bath. Also, sheet resistance values of the un-doped and Ni:CuO samples are a little affected due to bending of samples for bending radius ~ 20 mm. These flexible all solution-processed nanostructured CuO samples are promising candidates for use in future optoelectronic applications

    Expanded Bodipy Dyes: Anion Sensing Using a Bodipy Analog with an Additional Difluoroboron Bridge

    Get PDF
    Cataloged from PDF version of article.Oxalyl-tethered pyrroles can be doubly bridged with two difluoroboron chelating units to yield bright orange dyes. Interestingly, in polar organic solvents, the addition of fluoride and cyanide result in reversible detachment of the otherwise stable difluoroboron bridges, resulting in sharp changes in color. Thus, this novel compound behaves as a highly selective chromogenic sensor for fluoride and cyanide ions

    From Virtual to Physical: Integration of Chemical Logic Gates

    Get PDF
    Cataloged from PDF version of article.Integration by parts: Advanced information processing at the molecular level requires integrated logic gates, which has to date been possible only virtually. Now, two independently working AND molecular logic gates are brought together by "click" chemistry to form integrated logic gates which respond exactly as predicted from such an integration scheme (see picture, EET=excitation energy transfer). Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Modular logic gates: cascading independent logic gates via metal ion signals

    Get PDF
    Cataloged from PDF version of article.Abstract Systematic cascading of molecular logic gates is an important issue to be addressed for advancing research in this field. We have demonstrated that photochemically triggered metal ion signals can be utilized towards that goal. Thus, independent logic gates were shown to work together while keeping their identity in more complex logic designs. Communication through the intermediacy of ion signals is clearly inspired from biological processes modulated by such signals, and implemented here with ion responsive molecules. © 2014 The Royal Society of Chemistry.

    Near-IR-Triggered, Remote-Controlled Release of Metal Ions: A Novel Strategy for Caged Ions

    Get PDF
    Cataloged from PDF version of article.A ligand incorporating a dithioethenyl moiety is cleaved into fragments which have a lower metal-ion affinity upon irradiation with low-energy red/near-IR light. The cleavage is a result of singlet oxygen generation which occurs on excitation of the photosensitizer modules. The method has many tunable factors that could make it a satisfactory caging strategy for metal ions

    Near-IR absorbing BODIPY derivatives as glutathione-activated photosensitizers for selective photodynamic action

    Get PDF
    Enhanced spatiotemporal selectivity in photonic sensitization of dissolved molecular oxygen is an important target for improving the potential and the practical applications of photodynamic therapy. Considering the high intracellular glutathione concentrations within cancer cells, a series of BODIPY-based sensitizers that can generate cytotoxic singlet oxygen only after glutathione-mediated cleavage of the electron-sink module were designed and synthesized. Cell culture studies not only validate our design, but also suggest an additional role for the relatively hydrophobic quencher module in the internalization of the photosensitizer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Reaction-based sensing of fluoride ions using built-in triggers for intramolecular charge transfer and photoinduced electron transfer

    Get PDF
    (Figure Presented) Two Bodipy derivatives with silyl-protected phenolic functionalities signal fluoride concentrations both In solution and in a poly(methyl methacrylate) matrix. The exact location of the "nascent" phenolate group is Important. If it Is at the meso position, photoinduced electron transfer is triggered; however, if It is In full conjugation via a styryl moiety to the Bodipy core, strong intramolecular charge transfer Is triggered, resulting In a large red shift in the absorbance peak. In either case, a selective methodology for fluoride sensing is the Invariable result. © 2010 American Chemical Society

    Ion responsive near-IR BODIPY dyes: Two isomers, two different signals

    Get PDF
    Tetrastyryl-substituted BODIPY dyes are likely to evolve into a new class of near IR fluorophores. In this work we demonstrate that 1,7 and 3,5-positions show marked differences in charge transfer characteristics. Using a Hg(ii) selective ligand, the signal transduction potentials were explored: one isomer shows a large blue shift in electronic absorption spectrum, while the other just shows an intensity increase in the emission spectrum. Electronic structure calculations were undertaken to elucidate the reasons for different signals on metal ion binding in relation to core BODIPY properties. This journal is © the Partner Organisations 2014

    Designing an intracellular fluorescent probe for glutathione: Two modulation sites for selective signal transduction

    Get PDF
    A selective probe for glutathione was designed and synthesized. The design incorporates spatial and photophysical constraints for the maximal emission signal. Thus, pHs, as well as the intracellular thiol concentrations, determine the emission signal intensity through a tight control of charge-transfer and PeT processes. The probe works satisfactorily inside the human breast adenocarcinoma cells, highlighting GSH distribution in the cytosol. © 2014 American Chemical Society

    The Metabolic Redox Regime of <i>Pseudomonas putida</i> Tunes Its Evolvability toward Novel Xenobiotic Substrates

    Get PDF
    Some environmental bacteria evolve with new capacities for the aerobic biodegradation of chemical pollutants by adapting preexisting redox reactions to novel compounds. The process typically starts by cooption of enzymes from an available route to act on the chemical structure of the substrate-to-be. The critical bottleneck is generally the first biochemical step, and most of the selective pressure operates on reshaping the initial reaction. The interim uncoupling of the novel substrate to preexisting Rieske nonheme iron oxygenases usually results in formation of highly mutagenic ROS. In this work, we demonstrate that the background metabolic regime of the bacterium that hosts an evolving catabolic pathway (e.g., biodegradation of the xenobiotic 2,4-DNT) determines whether the cells either adopt a genetic diversification regime or a robust ROS-tolerant status. Furthermore, our results offer new perspectives to the rational design of efficient whole-cell biocatalysts, which are pursued in contemporary metabolic engineering.During evolution of biodegradation pathways for xenobiotic compounds involving Rieske nonheme iron oxygenases, the transition toward novel substrates is frequently associated with faulty reactions. Such events release reactive oxygen species (ROS), which are endowed with high mutagenic potential. In this study, we evaluated how the operation of the background metabolic network by an environmental bacterium may either foster or curtail the still-evolving pathway for 2,4-dinitrotoluene (2,4-DNT) catabolism. To this end, the genetically tractable strain Pseudomonas putida EM173 was implanted with the whole genetic complement necessary for the complete biodegradation of 2,4-DNT (recruited from the environmental isolate Burkholderia sp. R34). By using reporter technology and direct measurements of ROS formation, we observed that the engineered P. putida strain experienced oxidative stress when catabolizing the nitroaromatic substrate. However, the formation of ROS was neither translated into significant activation of the SOS response to DNA damage nor did it result in a mutagenic regime (unlike what has been observed in Burkholderia sp. R34, the original host of the pathway). To inspect whether the tolerance of P. putida to oxidative challenges could be traced to its characteristic reductive redox regime, we artificially altered the NAD(P)H pool by means of a water-forming, NADH-specific oxidase. Under the resulting low-NAD(P)H status, catabolism of 2,4-DNT triggered a conspicuous mutagenic and genomic diversification scenario. These results indicate that the background biochemical network of environmental bacteria ultimately determines the evolvability of metabolic pathways. Moreover, the data explain the efficacy of some bacteria (e.g., pseudomonads) to host and evolve with new catabolic routes
    corecore