25 research outputs found

    Potential of ferritin 2 as an antigen for the development of a universal vaccine for avian mites, poultry red mites, tropical fowl mites, and northern fowl mites

    Get PDF
    IntroductionPoultry red mites (PRMs, Dermanyssus gallinae), blood-sucking ectoparasites, are a threat to the poultry industry because of reduced production caused by infestation. In addition, tropical fowl mites (TFMs, Ornithonyssus bursa) and northern fowl mites (NFMs, Ornithonyssus sylviarum) are hematophagous, distributed in various regions, genetically and morphologically close to PRMs, and cause similar problems to the poultry industry. Vaccine approaches have been studied for PRM control, and several molecules have been identified in PRMs as candidates for effective vaccine antigens. The development of an anti-PRM vaccine as a universal vaccine with broad efficacy against avian mites could improve the productivity of poultry farms worldwide. Molecules that are highly conserved among avian mites and have critical functions in the physiology and growth of mites could be ideal antigen candidates for the development of universal vaccines. Ferritin 2 (FER2), an iron-binding protein, is critical for the reproduction and survival of PRMs and has been reported as a useful vaccine antigen for the control of PRMs and a candidate for the universal vaccine antigen in some tick species.Method and resultsHerein, we identified and characterized FER2 in TFMs and NFM. Compared with the sequence of PRM, the ferroxidase centers of the heavy chain subunits were conserved in FER2 of TFMs and NFMs. Phylogenetic analysis revealed that FER2 belongs to clusters of secretory ferritins of mites and other arthropods. Recombinant FER2 (rFER2) proteins from PRMs, TFMs, and NFMs exhibited iron-binding abilities. Immunization with each rFER2 induced strong antibody responses in chickens, and each immune plasma cross-reacted with rFER2 from different mites. Moreover, mortality rates of PRMs fed with immune plasma against rFER2 from TFMs or NFMs, in addition to PRMs, were higher than those of control plasma.DiscussionrFER2 from each avian mite exhibited anti-PRM effects. This data suggests that it has the potential to be used as an antigen candidate for a universal vaccine against avian mites. Further studies are needed to access the usefulness of FER2 as a universal vaccine for the control of avian mites

    Efficient isolation of Swine influenza viruses by age-targeted specimen collection

    No full text
    The control of swine influenza virus (SIV) infection is paramount for increasing the productivity of pig farming and minimizing the threat of pandemic outbreaks. Thus, SIV surveillance should be conducted by region and on a regular basis. Here, we established a microneutralization assay specific for SIV seroprevalence surveillance by using reporter gene-expressing recombinant influenza viruses. Growth-based SIV seroprevalence revealed that most sows and piglets were positive for neutralizing antibodies against influenza viruses. In contrast, the 90-day-old growing pigs exhibited limited neutralizing activity in their sera, suggesting that this particular age of population is most susceptible to SIV infection and thus is an ideal age group for SIV isolation. From nasal swab specimens of healthy pigs in this age population, we were able to isolate SIVs at a higher incidence (5.3%) than those of previous reports. Nucleotide sequencing and phylogenetic analysis of the hemagglutinin (HA) genes revealed that the isolated SIVs have circulated and evolved in pigs but not have been recently introduced from humans, implying that a large number of SIV lineages may remain “undiscovered” in the global porcine populations. We propose that the 90-day-old growing pig-targeted nasal swab collection presented in this study facilitates global SIV surveillance and contributes to the detection and control of SIV infection

    Search of the Infections Source of feline calicivirus in a Multicat Household

    No full text
    A multicat household experienced an epidemic of feline calicivirus (FCV) infection. FCV was isolated from eight of 34 cats. We analyzed molecular evolution of isolated FCVs by a phylogenic tree. All the isolates belonged to the genogroup II, and their nucleotide sequences showed >94% identity. They were subdivided into six distinct clusters by phylogenetic analysis, and Ao198-1, the source of infection, was most closely related to Ao199-1, then Ao212-1, Ao210-1, Ao214-1, Ao213-1, Ao222-1 and Ao224-1 in this order. Sequence alignments of the isolates showed that the nonsynonymous substitution/total number of nucleotides ratio was 80% in the regions C and 5\u27 and HVR of E. Our result suggested that the virus, while its transmission to the newborn cats, underwent frequent mutation especially at the regions C and E, suggesting these regions were most often involved in evolution of the FCV genome

    In vitro characterization of adipocyte plasma membrane-associated protein from poultry red mites, Dermanyssus gallinae, as a vaccine antigen for chickens

    Get PDF
    The poultry red mite (Dermanyssus gallinae; PRM) is a blood-sucking ectoparasite of chickens that is a threat to poultry farming worldwide and significantly reduces productivity in the egg-laying industry. Chemical acaricides that are widely used in poultry farms for the prevention of PRMs are frequently ineffective due to the emergence of acaricide-resistant PRMs. Therefore, alternative control methods are needed, and vaccination is a promising strategy for controlling PRMs. A novel adipocyte-plasma membrane-associated protein-like molecule (Dg-APMAP) is highly expressed in blood-fed PRMs according to a previous RNA sequencing analysis. Here, we attempted to identify the full sequence of DgAPMAP, study its expression in different life stages of PRMs, and evaluate its potential as a vaccine antigen. Dg-APMAP mRNA was expressed in the midgut and ovaries, and in all life stages regardless of feeding states. Importantly, in vitro feeding of PRMs with plasma derived from chickens immunized with the recombinant protein of the extracellular region of Dg-APMAP significantly reduced their survival rate in nymphs and adults, which require blood meals. Our data suggest that the host immune responses induced by vaccination with Dg-APMAP could be an effective strategy to reduce the suffering caused by PRMs in the poultry industry. (c) 2021 Elsevier Ltd. All rights reserved

    Selection of reference genes for quantitative PCR analysis in poultry red mite (Dermanyssus gallinae)

    No full text
    Poultry red mites (PRMs, Dermanyssus gallinae) are harmful ectoparasites that affect farmed chickens and cause serious economic losses in the poultry industry worldwide. Acaricides are used for PRM control; however, some PRMs have developed acaricide-resistant properties, which have indicated the need for different approaches for PRM control.Therefore, it is necessary to elucidate the biological status of PRMs to develop alternative PRM control strategies. Quantitative polymerase chain reaction (qPCR) allows analysis of the biological status at the transcript level. However, reference genes are preferable for accurate comparison of expression level changes given the large variation in the quality of the PRM samples collected in each farm. This study aimed to identify candidate reference genes with stable expression levels in the different blood feeding states and life stages of PRMs. First, we selected candidates based on the following criteria: sufficient expression intensity and no significant expression difference between fed and starved states. We selected and characterized seven candidate reference genes. Among them, we evaluated the gene expression stability between the starved and fed states using RefFinder; moreover, we compared their expression levels in each life-stage and identified two reference genes, Elongation factor 1-alpha (ELF1A)-like and apolipophorins-like. Finally, we evaluated the utility of the candidates as reference genes, and the use of ELF1A-like and apolipophorins-like successfully normalized ATP synthase subunit g -like gene expression. Thus, ELF1A-like and apolipophorins-like could be suitable reference genes in PRMs

    Suppressive modulation of host immune responses by Dermanyssus gallinae infestation

    No full text
    The poultry red mite (Dermanyssus galli-nae, PRM) is a blood-sucking ectoparasite in chickens and is one of the most serious threats to poultry farms. Mass infestation with PRMs causes various health prob-lems in chickens, resulting in significant productivity reduction in the poultry industry. Infestation with hema-tophagous ectoparasites, such as ticks, induces host inflammatory and hemostatic reactions. On the other hand, several studies have reported that hematophagous ectoparasites secrete various immunosuppressants from their saliva to suppress host immune responses to main-tain blood sucking. Here, we examined the expression of cytokines in peripheral blood cells to investigate whether PRM infestation affects immunological states in chickens. In PRM-infested chickens, anti-inflammatory cytokines, IL-10 and TGF-b1, and immune checkpoint molecules, CTLA-4 and PD-1, were highly expressed compared to noninfested chickens. PRM-derived soluble mite extracts (SME) upregulated the gene expression of IL-10 in peripheral blood cells and HD-11 chicken macrophages. In addition, SME suppressed the expression of interferons and inflammatory cytokines in HD-11 chicken macro-phages. Moreover, SME induces the polarization of mac-rophages into anti-inflammatory phenotypes. Collectively, PRM infestation could affect host immune responses, especially suppress the inflammatory responses. Further studies are warranted to fully understand the influence of PRM infestation on host immunity
    corecore