9 research outputs found
A systematic scoping review of study methodology for randomized controlled trials investigating probiotics in athletic and physically active populations
Background: The purported ergogenic and health effects of probiotics have been a topic of great intrigue among researchers, practitioners, and the lay public alike. There has also been an increased research focus within the realm of sports science and exercise medicine on the athletic gut microbiota. However, compared to other ergogenic aids and dietary supplements, probiotics present unique study challenges. The objectives of this systematic scoping review were to identify and characterize study methodologies of randomized controlled trials investigating supplementation with probiotics in athletes and physically active individuals. Methods: Four databases (MEDLINE, CINAHL, Cochrane CENTRAL, and Cochrane Database of Systematic Reviews) were searched for randomized controlled studies involving healthy athletes or physically active individuals. An intervention with probiotics and inclusion of a control and/or placebo group were essential. Only peer-reviewed articles in English were considered, and there were no date restrictions. Results were extracted and presented in tabular form to detail study protocols, characteristics, and outcomes. Bias in randomized controlled trials was determined with the RoB 2.0 tool. Results: A total of 45 studies were included in the review, with 35 using a parallel group design and 10 using a cross-over design. Approximately half the studies used a single probiotic and the other half a multi-strain preparation. The probiotic dose ranged from 2 × 108 to 1 × 1011 colony forming units daily, and the length of intervention was between 7 and 150 days. Fewer than half the studies directly assessed gastrointestinal symptoms, gut permeability, or the gut microbiota. The sex ratio of participants was heavily weighted toward males, and only 3 studies exclusively investigated females. Low-level adverse events were reported in only 2 studies, although the methodology of reporting varied widely. The risk of bias was generally low, although details on randomization were lacking in some studies. Conclusion: There is a substantial body of research on the effects of probiotic supplementation in healthy athletes and physically active individuals. Considerable heterogeneity in probiotic selection and dosage as well as outcome measures has made clinical and mechanistic interpretation challenging for both health care practitioners and researchers. Attention to issues of randomization of participants, treatments and interventions, selection of outcomes, demographics, and reporting of adverse events will facilitate more trustworthy interpretation of probiotic study results and inform evidence-based guidelines
Microwave Observations of Venus with CLASS
We report on the disk-averaged absolute brightness temperatures of Venus
measured at four microwave frequency bands with the Cosmology Large Angular
Scale Surveyor (CLASS). We measure temperatures of 432.3 2.8 K, 355.6
1.3 K, 317.9 1.7 K, and 294.7 1.9 K for frequency bands
centered at 38.8, 93.7, 147.9, and 217.5 GHz, respectively. We do not observe
any dependence of the measured brightness temperatures on solar illumination
for all four frequency bands. A joint analysis of our measurements with lower
frequency Very Large Array (VLA) observations suggests relatively warmer
( 7 K higher) mean atmospheric temperatures and lower abundances of
microwave continuum absorbers than those inferred from prior radio occultation
measurements.Comment: 10 pages, 3 figures, published in PS
A systematic scoping review of study methodology for randomized controlled trials investigating probiotics in athletic and physically active populations
Background: The purported ergogenic and health effects of probiotics have been a topic of great intrigue among researchers, practitioners, and the lay public alike. There has also been an increased research focus within the realm of sports science and exercise medicine on the athletic gut microbiota. However, compared to other ergogenic aids and dietary supplements, probiotics present unique study challenges. The objectives of this systematic scoping review were to identify and characterize study methodologies of randomized controlled trials investigating supplementation with probiotics in athletes and physically active individuals. Methods: Four databases (MEDLINE, CINAHL, Cochrane CENTRAL, and Cochrane Database of Systematic Reviews) were searched for randomized controlled studies involving healthy athletes or physically active individuals. An intervention with probiotics and inclusion of a control and/or placebo group were essential. Only peer-reviewed articles in English were considered, and there were no date restrictions. Results were extracted and presented in tabular form to detail study protocols, characteristics, and outcomes. Bias in randomized controlled trials was determined with the RoB 2.0 tool. Results: A total of 45 studies were included in the review, with 35 using a parallel group design and 10 using a cross-over design. Approximately half the studies used a single probiotic and the other half a multi-strain preparation. The probiotic dose ranged from 2 × 108 to 1 × 1011 colony forming units daily, and the length of intervention was between 7 and 150 days. Fewer than half the studies directly assessed gastrointestinal symptoms, gut permeability, or the gut microbiota. The sex ratio of participants was heavily weighted toward males, and only 3 studies exclusively investigated females. Low-level adverse events were reported in only 2 studies, although the methodology of reporting varied widely. The risk of bias was generally low, although details on randomization were lacking in some studies. Conclusion: There is a substantial body of research on the effects of probiotic supplementation in healthy athletes and physically active individuals. Considerable heterogeneity in probiotic selection and dosage as well as outcome measures has made clinical and mechanistic interpretation challenging for both health care practitioners and researchers. Attention to issues of randomization of participants, treatments and interventions, selection of outcomes, demographics, and reporting of adverse events will facilitate more trustworthy interpretation of probiotic study results and inform evidence-based guidelines
Uranus Orbiter and Probe: A Radio Science Investigation to Determine the Planet’s Gravity Field, Depth of the Winds, and Tidal Deformations
The most recent Planetary Science and Astrobiology Decadal Survey has proposed Uranus as the target for NASA’s next large-scale mission. The interior structure and atmosphere of the planet are currently poorly understood, and objectives for investigating Uranus’s deeper regions and composition are highly ranked. Traditionally, gravity science has served as one of the primary means for probing the depths of planetary bodies and inferring their internal density distributions. In this work, we present precise numerical simulations of an onboard radio science experiment designed to determine Uranus’s gravity field and tidal deformations, which would offer a rare view into the planet’s interior. We focus on the mission’s orbital planning, discussing crucial parameters such as the number of pericenter passes, orbital inclination, and periapsis altitude necessary to meet the gravity measurement requirements for a Uranus orbiter. Our findings suggest that eight close encounters may be sufficient to determine the zonal gravity field up to J _8 with a relative accuracy of 10%, if the trajectory is optimized. This would allow for the decoupling of the gravity field components due to interior structure and zonal winds. Additionally, we find that the expected end-of-mission uncertainty on Uranus’s Love number k _22 is of order ∼0.01 (3 σ ). This level of accuracy may offer crucial information about Uranus’s inner state and allow for discriminating between a liquid and solid core, thus shedding light on crucial aspects of the planet’s formation and evolution
Thermal Properties of the Leading Hemisphere of Callisto Inferred from ALMA Observations
We present a thermal observation of Callisto's leading hemisphere obtained using the Atacama Large Millimeter/submillimeter Array at 0.87 mm (343 GHz). The angular resolution achieved for this observation was ∼0.″16, which for Callisto at the time of this observation ( D ∼ 1.″05) was equivalent to ∼six elements across the surface. Our disk-integrated brightness temperature of 116 ± 5 K (8.03 ± 0.40 Jy) is consistent with prior disk-integrated observations. Global surface properties were derived from the observation using a thermophysical model constrained by spacecraft data. We find that models parameterized by two thermal inertia components more accurately fit the data than single thermal inertia models. Our best-fit global parameters adopt a lower thermal inertia of 15–50 J m ^−2 K ^−1 s ^−1/2 and a higher thermal inertia component of 1200–2000 J m ^−2 K ^−1 s ^−1/2 , with retrieved millimeter emissivities of 0.89–0.91. We identify several thermally anomalous regions, including spots ∼3 K colder than model predictions colocated with the Valhalla impact basin and a complex of craters in the southern hemisphere; this indicates the presence of materials possessing either a higher thermal inertia or a lower emissivity. A warm region confined to the midlatitudes in these leading hemisphere data may be indicative of regolith property changes due to exogenic sculpting
Recommended from our members
Claimed Detection of PH3 in the Clouds of Venus Is Consistent with Mesospheric SO2
Abstract
The observation of a 266.94 GHz feature in the Venus spectrum has been attributed to phosphine (PH3) in the Venus clouds, suggesting unexpected geological, chemical, or even biological processes. Since both PH3 and sulfur dioxide (SO2) are spectrally active near 266.94 GHz, the contribution to this line from SO2 must be determined before it can be attributed, in whole or part, to PH3. An undetected SO2 reference line, interpreted as an unexpectedly low SO2 abundance, suggested that the 266.94 GHz feature could be attributed primarily to PH3. However, the low SO2 and the inference that PH3 was in the cloud deck posed an apparent contradiction. Here we use a radiative transfer model to analyze the PH3 discovery, and explore the detectability of different vertical distributions of PH3 and SO2. We find that the 266.94 GHz line does not originate in the clouds, but above 80 km in the Venus mesosphere. This level of line formation is inconsistent with chemical modeling that assumes generation of PH3 in the Venus clouds. Given the extremely short chemical lifetime of PH3 in the Venus mesosphere, an implausibly high source flux would be needed to maintain the observed value of 20 ± 10 ppb. We find that typical Venus SO2 vertical distributions and abundances fit the JCMT 266.94 GHz feature, and the resulting SO2 reference line at 267.54 GHz would have remained undetectable in the ALMA data due to line dilution. We conclude that nominal mesospheric SO2 is a more plausible explanation for the JCMT and ALMA data than PH3
Large-scale invasion of western Atlantic mesophotic reefs by lionfish potentially undermines culling-based management
The detrimental effects of invasive lionfishes (Pterois volitans and Pterois miles) on western Atlantic shallow reefs are well documented, including declines in coral cover and native fish populations, with disproportionate predation on critically endangered reef fish in some locations. Yet despite individuals reaching depths >100 m, the role of mesophotic coral ecosystems (MCEs; reefs 30-150 m) in lionfish ecology has not been addressed. With lionfish control programs in most invaded locations limited to 30 m by diving restrictions, understanding the role of MCEs in lionfish distributions remains a critical knowledge gap potentially hindering conservation management. Here we synthesise unpublished and previously published studies of lionfish abundance and body length at paired shallow reef (0-30 m) and MCE sites in 63 locations in seven western Atlantic countries and eight sites in three Indo-Pacific countries where lionfish are native. Lionfish were found at similar abundances across the depth gradient from shallow to adjacent MCEs, with no difference between invaded and native sites. Of the five invaded countries where length data were available three had larger lionfish on mesophotic than shallow reefs, one showed no significant difference, while the fifth represented a recently invaded site. This suggests at least some mesophotic populations may represent extensions of natural ontogenetic migrations. Interestingly, despite their shallow focus, in many cases culling programs did not appear to alter abundance between depths. In general, we identify widespread invasive lionfish populations on MCE that could be responsible for maintaining high densities of lionfish recruits despite local shallow-biased control programs. This study highlights the need for management plans to incorporate lionfish populations below the depth limit of recreational diving in order to address all aspects of the local population and maximise the effectiveness of control efforts