3 research outputs found

    An evaluation of the efficacy of very high resolution air-quality modelling over the Athabasca oil sands region, Alberta, Canada

    Get PDF
    We examine the potential benefits of very high resolution for air-quality forecast simulations using a nested system of the Global Environmental Multiscale-Modelling Air-quality and Chemistry chemical transport model. We focus on simulations at 1 and 2.5 km grid-cell spacing for the same time period and domain (the industrial emissions region of the Athabasca oil sands). Standard grid cell to observation station pair analyses show no benefit to the higher-resolution simulation (and a degradation of performance for most metrics using this standard form of evaluation). However, when the evaluation methodology is modified, to include a search over equivalent representative regions surrounding the observation locations for the closest fit to the observations, the model simulation with the smaller grid-cell size had the better per

    Chemical Analysis of Surface-Level Ozone Exceedances during the 2015 Pan American Games

    No full text
    Surface-level ozone (O3) continues to be a significant health risk in the Greater Toronto Hamilton Area (GTHA) of Canada even though precursor emissions in the area have decreased significantly over the past two decades. In July 2015, Environment and Climate Change Canada (ECCC) led an intensive field study coincident with Toronto hosting the 2015 Pan American Games. During the field study, the daily 1-h maximum O3 standard (80 ppbv) was exceeded twice at a measurement site in North Toronto, once on July 12 and again on July 28. In this study, ECCC’s 2.5-km configuration of the Global Environmental Multi-scale (GEM) meteorological model was combined with the Modelling Air-quality and CHemistry (MACH) on-line atmospheric chemistry model and the Town Energy Balance (TEB) urban surface parameterization to create a new urban air quality modelling system. In general, the model results showed that the nested 2.5-km grid-spaced urban air quality model performed better in statistical scores compared to the piloting 10-km grid-spaced GEM-MACH model without TEB. Model analyses were performed with GEM-MACH-TEB for the two exceedance periods. The local meteorology for both cases consisted of light winds with the highest O3 predictions situated along lake-breeze fronts. For the July 28 case, O3 production sensitivity analysis along the trajectory of the lake-breeze circulation showed that the region of most efficient O3 production occurred in the updraft region of the lake-breeze front, as the precursors to O3 formation underwent vertical mixing. In this updraft region, the ozone production switches from volatile organic compound (VOC)-sensitive to NOx-sensitive, and the local net O3 production rate reaches a maximum. This transition in the chemical regime is a previously unidentified factor for why O3 surface-level mixing ratios maximize along the lake-breeze front. For the July 12 case, differences between the model and observed Lake Ontario water temperature and the strength of lake-breeze opposing wind flow play a role in differences in the timing of the lake-breeze, which impacts the predicted location of the O3 maximum north of Toronto

    Biomass burning nitrogen dioxide emissions derived from space with TROPOMI: methodology and validation

    Get PDF
    Smoke from wildfires is a significant source of air pollution, which can adversely impact air quality and ecosystems downwind. With the recently increasing intensity and severity of wildfires, the threat to air quality is expected to increase. Satellite-derived biomass burning emissions can fill in gaps in the absence of aircraft or ground-based measurement campaigns and can help improve the online calculation of biomass burning emissions as well as the biomass burning emissions inventories that feed air quality models. This study focuses on satellite-derived NOx emissions using the high-spatial-resolution TROPOspheric Monitoring Instrument (TROPOMI) NO2 dataset. Advancements and improvements to the satellite-based determination of forest fire NOx emissions are discussed, including information on plume height and effects of aerosol scattering and absorption on the satellite-retrieved vertical column densities. Two common top-down emission estimation methods, (1) an exponentially modified Gaussian (EMG) and (2) a flux method, are applied to synthetic data to determine the accuracy and the sensitivity to different parameters, including wind fields, satellite sampling, noise, lifetime, and plume spread. These tests show that emissions can be accurately estimated from single TROPOMI overpasses. The effect of smoke aerosols on TROPOMI NO2 columns (via air mass factors, AMFs) is estimated, and these satellite columns and emission estimates are compared to aircraft observations from four different aircraft campaigns measuring biomass burning plumes in 2018 and 2019 in North America. Our results indicate that applying an explicit aerosol correction to the TROPOMI NO2 columns improves the agreement with the aircraft observations (by about 10 %–25 %). The aircraft- and satellite-derived emissions are in good agreement within the uncertainties. Both top-down emissions methods work well; however, the EMG method seems to output more consistent results and has better agreement with the aircraft-derived emissions. Assuming a Gaussian plume shape for various biomass burning plumes, we estimate an average NOx e-folding time of 2 ±1 h from TROPOMI observations. Based on chemistry transport model simulations and aircraft observations, the net emissions of NOx are 1.3 to 1.5 times greater than the satellite-derived NO2 emissions. A correction factor of 1.3 to 1.5 should thus be used to infer net NOx emissions from the satellite retrievals of NO2.</p
    corecore