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Abstract. We examine the potential benefits of very high
resolution for air-quality forecast simulations using a nested
system of the Global Environmental Multiscale – Modelling
Air-quality and Chemistry chemical transport model. We fo-
cus on simulations at 1 and 2.5 km grid-cell spacing for the
same time period and domain (the industrial emissions region
of the Athabasca oil sands). Standard grid cell to observation
station pair analyses show no benefit to the higher-resolution
simulation (and a degradation of performance for most met-
rics using this standard form of evaluation). However, when
the evaluation methodology is modified, to include a search
over equivalent representative regions surrounding the ob-
servation locations for the closest fit to the observations, the
model simulation with the smaller grid-cell size had the bet-
ter performance. While other sources of model error thus
dominate net performance at these two resolutions, obscur-
ing the potential benefits of higher-resolution modelling for
forecasting purposes, the higher-resolution simulation shows
promise in terms of better aiding localized chemical analysis
of pollutant plumes, through better representation of plume
maxima.

1 Introduction

Numerical modelling of the atmosphere in an Eulerian
framework relies on discretization of the computational do-
main into a numerical grid. The horizontal grid-cell size of
atmospheric simulations can range from hundreds of kilo-
metres to the metre-scale of large eddy simulation models.
Air-quality model grid-cell size typically follows the grid-

cell sizes used in weather forecasting models, which in turn
have followed a gradual progression towards finer discretiza-
tion where more explicit representation of cloud formation
and local radiative transfer effects may be represented. The
most recent weather forecasting applications (e.g. Leroyer et
al., 2014) have reached grid-cell sizes as small as 250 m over
limited domains such as individual cities, and have shown
promising results in terms of being able to resolve some
aspects of local circulation. In addition, as grid resolution
reaches the 3 to 4 km scale, explicit cloud microphysics pack-
ages may be used, allowing potentially better performance,
particularly with regards to feedbacks between meteorology
and chemistry (Yu et al., 2014; Gong et al., 2015). How-
ever, while these models promise better physical represen-
tation of local chemistry, their performance may be limited
by the quantity and availability of initialization and bound-
ary condition meteorological data; these data may be used in
a data assimilation context to improve their initial state. The
accuracy of broader-scale meteorological predictions may
thus influence local model accuracy, despite the ongoing de-
crease in meteorological model (and consequently air-quality
model) grid-cell size. Some recent air-quality model simula-
tion studies with grid-cell sizes on the order of 1 to 4 km
include Thompson and Selin (2012), Li et al. (2014), Joe et
al. (2014), Kheirbek et al. (2014, 2016), and Pan et al. (2017).

For the purposes of this study, very high resolution (VHR)
modelling refers to the current higher-resolution limits of
chemical transport models (CTMs), employing a horizontal
grid-cell spacing of 1 km or less. It is in this regime that the
photochemical processes may be forecasted with resolved
microphysics (e.g. Milbrandt and Yau, 2005a, b) and detailed
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particle and gas-phase chemistry, using currently available
computer technology. VHR modelling is very computation-
ally expensive, and also introduces its own set of challenges,
such as the availability of surface boundary condition fields
as the model grid-cell size decreases. Moreover, it is not cur-
rently clear whether decreases in model grid-cell size leads
to more accurate results when compared to observations. The
motivation behind VHR modelling in CTMs is to reduce the
impact of diluting chemical concentrations – especially from
averaging emission plumes into large grid cells – in order to
better capture inhomogeneities in emission profiles, to better
simulate local transport processes associated with terrain that
would otherwise be smoothed by the use of a coarse grid, and
to reduce truncation errors and hence achieve better numeri-
cal accuracy (Jacobson, 1999).

We note here that while the terms “grid-cell size” and “res-
olution” tend to be used interchangeably in the literature, this
is not true in a precise mathematical sense; more formally,
the ability to resolve features of size 21x requires a grid-
cell spacing of size 1x, and the highest spatial frequency
which can be reconstructed from a discrete sampling of the
latter grid-cell spacing will be 1

21x
, the Nyquist wavenum-

ber of the grid-cell size discretization. Furthermore, atmo-
spheric models may make use of energy dissipation tech-
niques that broaden the size of resolvable wavelengths to 3 to
4 1x (Grasso, 2000; Pielke, 2001). Model resolution is thus
a function of, but not equivalent to, grid-cell size. Here, we
define “resolution” as the ability of a model to clearly distin-
guish components of a predicted atmospheric variable, as a
function of grid-cell size.

The issue of a model to distinguish these features is also
compounded by uncertainties in model inputs. For example,
in a large rural setting, a large model grid cell will represent
an area containing many roads, whose emissions will be aver-
aged into one value per species per time. As the grid-cell size
decreases, however, this averaging effect will be reduced,
giving each road’s emissions more impact on the resulting
concentrations in the grid cell containing it. However, the
smaller grid-cell size will also result in steeper concentration
gradients in the model between adjacent grid cells, which can
in turn result in numerical instabilities that contaminate pre-
dictions (Salvador et al., 1999). At the same time, a reduc-
tion in grid-cell size can be shown formally to reduce inac-
curacies in the discretization of the governing equations for
atmospheric motion (Coiffier, 2011). Previous efforts to ad-
dress these issues through variable grid size or structure in air
quality modelling have not received sustained attention, and
therefore most current air quality models use a uniform (al-
beit nested) grid-cell size in applications (Garcia-Menendez
et al., 2010; Kumar et al., 1997).

As resolution increases further, the presence of local to-
pographical features (e.g. buildings and street canyons) be-
comes more important. Both the increased topographic com-
plexity and potential numerical instabilities can lead to dif-
ferences in meteorological forcing as resolution increases

(Wolke et al., 2012; Gego et al., 2005). The contribution
of meteorological uncertainties due to resolution becomes
more significant, especially for secondary pollutants such
as ozone (Valari and Menut, 2008) or secondary particulate
matter (PM). For example, Markakis et al. (2015) in their
analysis of 4 km CHIMERE simulations for the relatively
flat terrain of Paris, France, suggested that model meteoro-
logical grid-cell size does not significantly impact forecast
accuracy. That may not have been the case, had their terrain
been more complex. In contrast, Queen and Zhang (2008)
observed considerable meteorological sensitivity to the more
complex terrain in their 4 km resolution Community Multi-
scale Air Quality (CMAQ; EPA, 1999) model simulations
over the Appalachian Mountains in the eastern United States,
as did Salvador et al. (1999) for meteorological model simu-
lations.

A number of studies have tried to evaluate the benefits of
higher-resolution simulations and to quantify the impact of
sub-grid variability by using different model grid-cell sizes
(Vardoulakis et al., 2003; Ching et al., 2006; Pepe et al.,
2016). These studies have often demonstrated that failure
to account for higher-resolution features may result in mis-
characterization of concentrations or health impacts (Isakov
et al., 2007), although the capability of current models to
provide this information with sufficient accuracy is unclear.
One study found that increasing resolution did not change
predicted health outcomes and concluded that “resolution
requirements should be assessed on a case-by-case basis”
(Thompson and Selin, 2012), while others (e.g. Kheirbek
et al., 2014, 2016) have employed 1 km resolution without
discussing the impacts of resolution on predicted health out-
comes. Population exposure studies using air pollution mod-
els may be affected by resolution in a more complex fash-
ion, given that both the predicted field (a pollutant with a
known health impact) and the data to which the predicted
field is to be linked (the human population) both have res-
olution dependencies. The health studies carried out to date
highlight the need for better understanding of the underlying
controlling factors for model accuracy with decreasing grid-
cell size.

Terrain and meteorology are not the only factors that con-
tribute to greater uncertainties as horizontal grid-cell size is
reduced – for example, the ability of the model to locally re-
solve emission fluxes may also become a factor. This may
result in improved or deteriorated model performance as the
size of the grid cells decreases. Gridded model emissions
may have an intrinsic resolution dependence due to the un-
derlying spatial disaggregation fields, and this can contribute
to uncertainties and errors in emissions as grid-cell size is
decreased. For instance, Valari and Menut (2008) found that
the discrepancy between their modelled and observed con-
centrations grew rather than shrank, in response to decreases
in grid-cell size from 48 to 6 km, and they associated these
results with changes in the resulting local emission fluxes.
They showed that in their model setup, with regard to ozone,
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a grid-cell size was reached (12 km× 12 km) where errors in
inputs (errors in the emission inventory, wind direction, etc.)
outweighed the importance of other sources of model error
such as grid-cell size. The authors, however, noted that Paris’
ozone photochemistry very often resides on the transition be-
tween a NO−x -sensitive and a VOC-sensitive regime (Sillman
et al., 2003). These are chemical conditions which can alter-
natively produce or titrate ozone and hence have a degree
of sensitivity to precursor emissions, and therefore, also, to
any errors in those emissions. Conversely, in a 3-level nested
MM5–CMAQ simulation with grid-cell sizes going from 9 to
3 to 1 km over Osaka, Japan, Shrestha et al. (2009) found that
ozone comparisons to observations improved as the grid res-
olution increased. This was also the case for a 3-level nested
MM5–CMAQ simulation going from 36 to 12 to 4 km over
Houston, USA (Ching et al., 2006), where the ozone fore-
cast improvement associated with higher resolution was at-
tributed to the ability of the finer grid-cell size model nests
to adequately resolve high concentrations of freshly emitted
NOx and hence allow for more local ozone titration. The lat-
ter process might not take effect until the grid-cell size is
sufficiently fine to resolve the NOx source patterns (i.e. a
level where traffic and industrial sources can be identified.)
This titration was not seen until they decreased their grid-cell
sizes to 2 km and smaller. Stroud et al. (2011) noted a similar
grid-cell-size-dependent chemical impact on model perfor-
mance, where secondary organic aerosol formation maxima
were better simulated with a 2.5 km grid-cell size model than
a 10 km grid-cell size model. In general, the impact of reso-
lution on model performance appears to depend on a number
of factors, such as the terrain, spatial distribution of sources,
pollutant of concern, season, etc. (Arunachalam et al., 2006;
Queen and Zhang, 2008; Dore et al., 2012).

Salvador et al. (1999) studied the prediction accuracy im-
pacts of meteorological model grid-cell size in a region with
a complex domain and found that 2 km or smaller grid-cell
sizes were required to resolve local-scale complex terrain
flow features, and that daytime vertical advection and pre-
dictions of turbulent kinetic energy and potential tempera-
ture were influenced by grid-cell size. Dore et al. (2012)
evaluated air quality model NO2 simulations employing 1,
5, and 50 km grid-cell sizes against observations and found
the best performance for the 1 km simulation, with more
physically realistic distributions of reactive nitrogen, attribut-
ing this performance gain to more realistically precipitation
simulations and emissions inputs for the smallest grid-cell
size. The availability of high-resolution emissions informa-
tion may be a limiting factor in improved simulations as grid-
cell size decreases. Valari and Menut (2008) noted that emis-
sions inaccuracy was the principal cause of noise in small
grid-cell size simulations conducted for the Paris area, and
proposed the use of statistical downscaling in favour of pre-
dictive modelling at scales at or below 1 km grid-cell size.
The current state of model science is typically evaluated
through multi-model intercomparisons (e.g. Im et al., 2015),

and the meta-analysis of these studies can be used to provide
useful benchmarks to assess current model performance for
specific model species and observations (Emery et al., 2017).
However, such studies do not identify the causes for good
or poor performance relative to the benchmarks – diagnostic
studies “in which chemical and physical processes within the
model are analyzed individually and collectively” (Emery et
al., 2017) are required for this purpose. Examinations of the
impact of model grid-cell size on performance are an exam-
ple of such a diagnostic evaluation.

The benefits for model performance with increased spatial
resolution are unclear, based on the above literature. How-
ever, most papers converge towards the following qualitative
conclusions:

– The impact of terrain topology on meteorological forc-
ing as grid-cell size decreases can dwarf the impact of a
more accurate spatial apportionment of the correspond-
ing emissions.

– Decreases in grid-cell size result in a more realistic
spatial distribution of chemical species, whether or not
model performance is improved.

– Uncertainties in spatial and temporal emissions alloca-
tion have an increasing influence on overall model un-
certainty as model grid-cell size decreases.

The 1980s saw several studies in which the potential impacts
of wind direction errors on dispersion model performance
were examined. Fox (1981) noted that pairing of model out-
put at observation station locations could be done as a func-
tion of both time and space: as a function of time (by com-
bining the data across all stations), as a function of space (by
combining all times, at each station location), or without any
pairing (observations and data were compared as cumulative
frequency distributions). The accuracy of regulatory disper-
sion models in the early 1980s was such that Fox (1984) con-
cluded that model and observation values paired in time and
space exhibited “little to no correlation” and discussed poten-
tial errors associated with transport. Poor correlations were
also noted in the report on the first generation of reactive-
transport models by Hanha (1988), who stated “wind di-
rection errors are the major cause of the poor agreement in
hourly predictions of concentrations at short distances down-
wind of point sources,” and described metrics for air-quality
model evaluation. Hanha (1988) also noted that model pre-
dictions could be offset in space and time relative to observa-
tions, leading to poor performance statistics, despite a greater
degree of similarity of behaviour if the offsets are taken into
account. Errors in wind-field modelling were described as the
main source of error in simulations of plumes by Carhart et
al. (1989), who again showed how better agreement resulted
when model and observations were unpaired in time and/or
space and noted that other metrics such as maximum plume
width might better represent model performance. Lee (1987)
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found that small perturbations in space and time could result
in poor correlations, despite similar histogram distributions
of both model and observations.

More recently, Kang et al. (2007) examined the concept of
using the area of the limiting resolution of the model (2 to
31x, where 1x is the horizontal grid-cell size) to weight
or spatially average model evaluation metrics for a single
grid-cell size, noting how the model’s rated ability to cap-
ture high-concentration events (“hits”) was increased when
the limiting resolution of the model was incorporated into
the performance metrics. However, the use of averaging may
mask the potential for a model with a small grid-cell size to
contain both the desired plume magnitude and much lower
concentrations, within the same larger representative area, in
turn masking the potential impact of the reduction in grid-cell
size.

We expand on this concept to evaluate the impact of model
grid-cell size in the context of an equivalent area about a
given observation location. We examine area-weighted met-
rics in the form of averages over roughly equivalent areas
for different model grid-cell sizes, and also use the a priori
knowledge of the observations to determine whether the clos-
est match to observations may be found within an equivalent
area. We show that the latter metric demonstrates a positive
impact of model grid-cell size on simulation results, while
more simple paired comparisons, and averages over similar
areas, mask these benefits.

We examine the impact of grid-cell size on model perfor-
mance in a region of intense petrochemical extraction and up-
grading, the Athabasca oil sands region (AOSR). The AOSR
refers to the northernmost of three large bitumen deposits lo-
cated the northern part of the province of Alberta in Canada:
the Athabasca, Peace River, and Cold Lake areas. Together
these areas cover 142 200 km2 in total and constitute the third
largest oil reserves in the world (Government of Alberta,
2016), as shown in Fig. 1. The oil sands sector is the second
largest source of SO2 and the third largest source of industrial
NOx in the province of Alberta. This sector is also a signifi-
cant source of industrial PM, CO, and volatile organic com-
pound (VOC) emissions (Zhang et al., 2018), from a variety
of source types and industrial processes (e.g. open pit mine
tailings ponds, large diesel fleets, bitumen upgrading facili-
ties). As is described below, very high resolution emissions
data are available for these sources, and emissions take place
in a region with significant topography, hence the region pro-
vides a good test case for the relative impact of grid-cell size
on air-quality model prediction results.

Next we describe our model, the simulation domains and
forecasting setup, the emissions data, our evaluation method-
ology, and the results of our analysis.

Figure 1. Map showing the oil sands regions (based on an image
from Government of Alberta, 2016).

2 Methodology

2.1 GEM-MACH

The air-quality model used in this work is Environment and
Climate Change Canada’s (ECCC) Global Environmental
Multiscale – Modelling Air-quality and Chemistry (GEM-
MACH) model, which has been in use as Canada’s opera-
tional air-quality forecast model since 2009 (Moran et al.,
2010). GEM-MACH is an on-line model; that is, both mete-
orological and chemistry processes are handled within a sin-
gle model. The chemical processes reside within the physics
module of the Global Environmental Multiscale meteorolog-
ical forecast model (Côté et al., 1998a, b), originate with En-
vironment Canada’s earlier off-line model (A Unified Re-
gional Air-quality Modelling System, AURAMS; Gong et
al., 2006), and include process representation for particle mi-
crophysics (Gong et al., 2003a, b), inorganic heterogeneous
chemistry (Makar et al., 2003), aqueous phase chemistry, in-
cloud and below-cloud scavenging (Gong et al., 2006), and
secondary organic aerosol formation (Stroud et al., 2011).
GEM-MACH employs a sectional approach to represent the
size distribution of atmospheric particles, with 12-bin (Makar
et al., 2015a, b; Gong et al., 2015) or 2-bin configurations
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(Moran et al., 2010). The latter configuration is designed for
maximum computational efficiency, with re-binning to the
12-bin distribution for key particle microphysics processes,
in order to improve accuracy. Here, the 2-bin version of the
model has been used, the main focus of the work being the
impact of horizontal grid-cell size on model results. Eight
aerosol chemical components are resolved in GEM-MACH
(sulfate, nitrate, ammonium, elemental carbon, primary or-
ganic aerosol, secondary organic aerosol, sea salt, and crustal
material). In the present study, we make use of GEM-MACH
v.1.5.1, described in more detail in Makar et al. (2015a, b),
employing 80 levels in a hybrid vertical coordinate system
extending up to 0.1 hPa (∼ 30 km). Both model grid-cell size
simulations compared here (2.5 and 1 km grid-cell sizes; see
below) make use of the Milbrandt–Yau double-moment ex-
plicit microphysics scheme; that is, cloud processes are re-
solved explicitly at these scales (Milbrandt and Yau, 2005a,
b).

2.2 Model setup

2.2.1 Grid nesting

Four levels of nesting have been employed in our simu-
lations, shown in Fig. 2a. This version of GEM-MACH
operates on a rotated latitude–longitude coordinate system
wherein the position of the coordinate system poles is set
by the user, allowing rotations of the grid with decreasing
grid-cell size during nesting. The outermost nested grid cor-
responds to the westernmost two-thirds of the operational
GEM-MACH forecasting domain, with a 10 km grid-cell
size, and employ a combination of the Kain–Fritsch sub-
gridscale convective cloud scheme (Kain and Fritsch, 1990;
Kain, 2004) and a Sunqvist (1988) scheme for cloud param-
eterizations. Within that outer grid is nested a 10 km grid-
cell size western Canada domain (yellow region, Fig. 2a)
which has been rotated to match the horizontal orientation
of the Rocky Mountains, and which makes use of a double-
moment microphysics scheme (Milbrandt and Yau, 2005a,
b) in place of the Sundqvist (1988) parameterization. The in-
tention of this intermediate local 10 km simulation domain
was to provide initial hydrometeors for the two innermost
domains, to reduce the “spin-up” time required for the in-
ner domains’ meteorology to reach an equilibrium with re-
spect to cloud formation. The latter two domains (2.5 and
1 km grid-cell sizes) resolve the cloud microphysics explic-
itly using the double-moment scheme alone and no convec-
tive parameterization (Milbrandt and Yau, 2005a, b). The
third nested grid inset (green region, Fig. 2a) is the 2.5 km
grid-cell size domain, which covers most of the Canadian
provinces of Alberta and Saskatchewan. This grid will here-
after be referred to as the OS2.5km domain. The fourth and
final nested grid (blue square, Fig. 2a) is a 1 km grid-cell size
domain, roughly centered over and covering the immediate
environs of the Athabasca oil sands, and is referred to here-

after as the OS1km model. This last nest also shows the re-
gion within which 22 instrumented aircraft flights were con-
ducted during August and September of 2013, providing a
unique measurement data set for our evaluation of the OS2.5
and OS1km model output for the same time period. Table 1
provides details on the horizontal dimensions of each of these
nested domains and the duration of the simulations on each
grid. All four model nests make use of the same vertical co-
ordinate and levels. Figure 2b shows the topography of the
1 km domain in detail; the region to be modelled is situated
in a broad river valley, with a local vertical relief of 750 m.
Significant wind shears and frequent inversions are observed
in the region, and part of our interest in 1 km grid-cell size
simulations is to determine the extent to which these local
features may influence model prediction accuracy.

2.2.2 Simulation cycling strategy

Model simulations mimic an operational forecasting system,
starting from the use of archived, data-assimilated meteoro-
logical analyses as meteorological input and boundary condi-
tions every 36 h. The use of analysis fields is a standard me-
teorological forecasting practice to prevent the chaotic drift
of the model results from observed meteorology over time.
The outermost 10 km domain uses initial and boundary con-
ditions from the output of a meteorological simulation, that
is itself driven by an analysis field. The outermost domain
model then carries out a 36 h forecast, of which the first 6 h
is discarded as spin-up; the final 30 h is used as initial and
boundary conditions for the rotated 10 km grid-cell size do-
main (the OS10 km domain). An OS10 km simulation of 30 h
is then carried out, with the first 6 h being discarded as spin-
up, and the latter 24 h forming the initial and boundary condi-
tions for the 2.5 km grid-cell size OS2.5km simulation. The
OS2.5km simulation is of 24 h duration. The OS1km sim-
ulation covers the same 24 h (and hence both 2.5 and 1 km
simulations start from the same OS10 km initial conditions
for every 24 h forecast), with the 2.5 km simulation providing
boundary conditions thereafter to the OS1km model. Conti-
nuity between 24 h forecasts is thus maintained at the level
of the outermost nest. The outermost domain is cycled ev-
ery 12 h starting at 00:00 and 12:00 UT; however, we have
selected the set of contiguous OS2.5 and OS1km 24 h sim-
ulations starting from the 12:00 UT continental domain for
our comparison.

Meteorological boundary conditions for the lowest-
resolution GEM-MACH simulations are taken from opera-
tional GEM forecasts, in turn driven by data assimilation
analyses performed at the Canadian Meteorological Centre.

2.3 Model emissions

All emissions data used in this work are described in Zhang
et al. (2018). These emissions data include
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Figure 2. (a) The four nested domains of the GEM-MACH simulations. From outermost to innermost domains, these are CONT10 km
(outermost, red dots), OS10 km (yellow), OS2.5km (green), and OS1km (blue). The model simulations from the two innermost domains
are the focus of the present study. (b) Topography in the OS1km domain centered on Fort McMurray, Alberta (m a.g.l.). The coloured area
corresponds to the central blue domain in (a).

Table 1. Nested domain specifications.

Parameter CONT10 km OS10 km OS2.5km OS1km

Grid size 520× 520 318× 280 643× 544 318× 324

Time step 300 300 60 20
size (s)

Hours 36 30 24∗ 24∗

simulated
∗ Note that both OS2.5 and OS1km output frequency was hourly.

a. direct observations of stack-specific hourly emissions
measured by continuous emission monitoring systems
(CEMS);

b. regional emissions inventory data from the Cumula-
tive Environmental Management Association (CEMA)
– which had the most detailed stack and process level
emission data for the AOSR facilities, including emis-
sions from mine faces, tailings ponds, and the off-road
mining feet);

c. the 2010 Canadian Air Pollutant Emissions Inventory
(APEI) – which is the most comprehensive national
emissions inventory, and which has the largest spatial
coverage for area sources outside the AOSR; and

d. the 2013 National Pollutant Release Inventory (NPRI)
(a subset of the APEI) that is based on emissions reports
from large industrial facilities.

These emissions data sets primarily describe emissions of
pollutants known as criteria air contaminants (NOx , VOCs,
SO2, NH3, CO, PM2.5, and PM10) for major-point sources

(i.e. large emission stacks) and area sources. Area emissions
sources typically consist of multiple small mobile sources
spread over a large area (e.g. off-road vehicles), large flux
sources such as mine tailings settling ponds or mine faces,
and/or large numbers of small stacks for which no stack char-
acteristic data (volume flow rates, temperatures of emissions,
stack diameters), needed to estimate plume-rise heights, are
available.

Major-point sources are represented by a single geograph-
ical (latitude, longitude) pair of coordinates, and are assigned
to the grid cell in which the point is located. These sources
are likely to be the most impacted by model horizontal grid-
cell size, as even a large major-point source plume, which
in reality may only occupy an emissions horizontal area on
the order of 100 m2, is represented by a flux spread over an
entire grid cell. A plume from a major point source within
a 2.5 km grid cell will thus be immediately diluted to a size
of 6.25 km2 upon emission, whereas the same source with a
1 km grid cell will have a cross-sectional horizontal extent
of 1 km2. At the same time, higher resolution may require a
much more accurate representation of model winds close to
the sources to maintain accuracy in evaluation metrics depen-
dant on plume position such as correlation – a wider plume
being more likely to at least partially intersect a monitoring
station location than a narrower plume.

Area sources that are large compared to both model grid-
cell sizes (2.5 and 1 km) can be expected to be approximated
by model grid cells of both resolutions and are thus expected
to be less impacted by model resolution than emissions from
point sources. However, smaller area sources (i.e. areas in-
termediate between 2.5 and 1 km to the side) may be better
resolved, and hence have less dilution and higher downwind
concentrations, when higher spatial resolution is employed.
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In the AOSR, approximately 95 % of the SO2 emissions
originate in major-point sources, while NO2 is apportioned
∼ 40 % to major-point sources and ∼ 60 % to area sources
(Zhang et al., 2018). Consequently our a priori expectation
is that the impact of the resolution change will be strongest
for species like SO2, and less strong for species like NO2 that
are emitted in part by point sources, but may also be apparent
for other species and secondary products, such as O3.

2.4 Model evaluation methodology and metrics

Comparisons between air-quality models and observations
usually take the approach of comparing observation and
model-generated values paired in time and space, from the
observation location and corresponding model grid-cell re-
spectively. We refer to this approach hereafter as our “stan-
dard” evaluation, for both 2.5 and 1 km simulations. How-
ever, we note additional factors aside from grid-cell size
may influence the outcome of air-quality model evaluations.
For example, the relative skill of the meteorological com-
ponent of the air-quality model will depend in part on the
density of meteorological observation data, incorporated into
the model via data assimilation, for the construction of the
model’s initial meteorological state. This in turn will influ-
ence the local skill of the model’s predicted wind directions
and hence the skill of its plume transport. The simulations
carried out here focus on the Fort McMurray area, where the
nearest available upper air meteorological sounding site is
located at the ECCC Stony Plain station, located approxi-
mately 500 km south-west of the study area. The advantage
of higher-resolution simulations (e.g. reduced numerical er-
ror associated with the discretization of transport operators,
and better treatment of local topographic influences) may
thus be offset by errors in the predicted large-scale flow.

While meteorological model synoptic-scale forecast errors
may manifest themselves locally as errors in the direction of
winds driving local plume transport, other advantages may
result from the use of higher-resolution air-quality models.
Since lower resolution models de facto instantaneously redis-
tribute plumes emitted from large stack sources over a larger
area, such artificial diffusion will reduce the model’s abil-
ity to accurately simulate concentration maxima, and the re-
sulting chemistry, within simulated model plumes. However,
the spatial extent of a plume in a model employing a large
horizontal grid-cell size may be such that its existence may
be captured at discrete observing sites. In contrast, forecast
plumes in models with smaller horizontal grid-cell sizes may
correctly capture plume magnitude and chemical behaviour,
but may be more subject to errors in the larger-scale wind di-
rection. To illustrate this point, Fig. 3 shows a conceptual di-
agram of an actual plume, a large grid-cell size model plume,
and a small grid-cell size model plume, where the latter two
simulated plumes are both subject to the same synoptic-scale
error in wind forecast direction (indicated by large red ar-
rows; the smaller red arrow in Fig. 3c indicates the impact of

Figure 3. Schematic comparison of surface concentration contours
and model grid-cell values of a transported pollutant plume from
a large stack (termed a “point” source). Wind direction shown by
red arrows. Monitoring station location marked by “+A”. (a) Ac-
tual plume. (b) Coarse grid-cell size air-quality model prediction.
(c) Fine grid-cell size air-quality model prediction. Note the change
in wind direction between observations (a) and simulations (b,
c) associated with errors in the forecast of the synoptic wind.

local forcing predicted for the second model). Observation
station “+A” is located downwind, and records the presence
of the actual plume (Fig. 3a). The coarse grid-cell size sim-
ulated plume (Fig. 3b), despite the error in the forecast wind
direction, captures part of the observed plume in the result-
ing time series at the observation station location. In contrast,
the small grid-cell size plume (Fig. 3c), despite resolving the
plume shape (and plume internal chemistry) to a greater de-
gree than the coarse grid-cell size simulated plume, fails to
record the presence of the plume at the observation loca-
tion. A simple paired observation–model time series evalu-
ation would thus suggest that the former model has superior
performance to the latter model in this example, despite the
latter model having created a more “realistic” plume in terms
of the maximum concentration reached, albeit in the wrong
location, due to synoptic-scale forecast wind direction error.
In this particular instance, the magnitude of the smaller grid-
cell size simulated plume is more realistic than that of the
coarse grid-cell size plume, but this improvement will not be
captured in a standard evaluation analysis. Shifts in plume
location across individual grid cells away from the location
of an in situ observation are more likely grid-cell size de-
creases. In this example, a standard analysis would impose a
more stringent expectation on the smaller grid-cell size sim-
ulation to correctly identify plume locations.

In addition to the standard analysis, we perform additional
analyses that examine the model’s ability to resolve plumes
in the vicinity of the observation station, in order to attempt
to evaluate the potential for higher-resolution simulations to
provide benefits which may be masked by synoptic-scale
forcing errors. This strategy is illustrated in Fig. 4.

Figure 4a shows an observation station enclosing the nine
nearest-neighbour model grid cells for a 2.5 km grid-cell size,
while Fig. 4b shows the corresponding 1 km grid-cell size
map, with the 9 nearest-neighbour model grid cells shown
in light grey and the 49 nearest grid cells shown in the re-
gion enclosed in dark grey. Figure 4a encloses a region of
56.25 km2 (7.5 km× 7.5 km), while the light grey region in
Fig. 4b encloses 9 km2, and the darker grey region encloses
49 km2.
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Figure 4. Scale diagram of the same region in (a) a 2.5 km grid-cell
size simulation and (b) a 1 km grid-cell size simulation. Region en-
closed by light grey (dark grey) shading in (b) represents the nearest
9 (49) 1 km grid points surrounding the observation location “A”.

As noted above, in a formal mathematical sense, the small-
est region resolvable by an Eulerian grid model is twice the
size of the model grid-cell size (relating to the Nyquist fre-
quency of the model); hence the smallest resolvable feature
spans two model grid cells in each direction. However, in a
practical sense, a total of nine grid cells centered on the ob-
servation station must be used to allow a boundary of two
grid cells in any direction. Sampling any or all of the nine
grid cells in Fig. 4a may thus be said to be representative of
the model’s ability to simulate events occurring at discrete
location “+A”. The closest corresponding sampling region
available to the 1 km model (Fig. 4b) is shown in dark grey.
The light grey region of Fig. 4b represents the closest 1 km
grid-cell size region that corresponds to the single 2.5 km
grid cell in which the observation station is located in Fig. 4a.
We attempt to ascertain model performance in these approx-
imately equivalent regions around each observation station,
in the analysis that follows.

Our approach follows two steps:

1. From the 2.5 km simulation, in addition to the predicted
model value at the grid cell containing the observation
location, we determine the model grid-cell value in the
nine grid cells surrounding the observation station lo-
cation which has the closest value to that observed at
the station. This represents the model’s “best estimate”
of the value at the observation station location itself
and represents the model’s ability to resolve features at
2.5 km grid-cell size.

2. From the 1 km simulation, in addition to the model
value at the grid-cell location, we select the closest value
to the observation value from

a. the nearest nine grid cells to the observation station
location, and

b. the nearest 49 grid cells to the observation station
location.

The former represents the model’s “best estimate” of the
value at the observation station location itself, while the
latter represents the 1 km model’s best estimate in the
closest equivalent region to the limiting resolution of the
2.5 km model.

Comparing the resulting statistical measures of each of
these selected values with observations, in addition to the
standard analysis, thus evaluates the model’s best attempt
to resolve features for the specified grid-cell size and allows
cross-comparison of model performance within nearly equiv-
alent areas. Cross-comparing the statistical values for the dif-
ferent regions described above shows the model’s ability to
resolve features such as plumes from the standpoint of the
region represented at the different grid-cell sizes. If synoptic-
scale transport direction errors create situations similar to
that depicted in Fig. 3a, a standard comparison of error would
be expected to show little benefit to higher resolution. How-
ever, the “best model estimate” comparisons would capture
the ability of the higher-resolution model to more accurately
simulate the magnitude of the plume, if not its spatial loca-
tion. Each of these selection procedures will be employed in
the surface concentration comparisons which follow.

We evaluate our model simulations against observations
made at surface monitoring networks in the vicinity of the
Athabasca oil sands, and aboard an instrumented aircraft,
the National Research Council of Canada Convair. For the
surface monitoring data, hourly time series of model output
were matched to station time series using the different strate-
gies described above. For the aircraft observations, we ex-
tract model values through temporal and spatial interpolation
to the aircraft’s position during the flights and only perform
the standard analysis, as well as examining the behaviour of
the two simulations along cross sections corresponding to the
flight paths.

Our statistical metrics for evaluation are common to many
other air-quality applications and were computed using the
“modstat” function from the OpenAir R package (Carslaw
and Ropkins, 2012). Further discussion of different metrics
for model evaluation may also be found in Yu et al. (2006).
The statistics calculated here include mean bias (MB; perfect
score: zero), mean absolute gross error (MGE; perfect score:
zero), normalized mean bias (NMB; perfect score: zero), nor-
malized mean gross error (NMGE: perfect score: zero), root
mean squared error (RMSE; perfect score: zero), correlation
coefficient (r , perfect score: unity), coefficient of efficiency
(COE: a perfect score is unity, a zero or negative score means
the model is equivalent or less predictive, respectively, than
the mean of the observations), and the index of agreement
(IoA; perfect agreement is unity, and −1 indicates no agree-
ment or little variability).

3 Simulation comparisons and evaluation

3.1 Model-to-model comparisons and averages

We begin a comparison of 2.5 and 1 km grid-cell size for
specific events, and for averages across the 1 km domain,
in order to provide a qualitative comparison of the differ-
ences in simulations for the two simulations and then con-
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tinue with the quantitative comparison. Figure 5 compares
OS2.5km (left column) and OS1km (right column) simula-
tion results for a cross section located 0.2 km from a major
SO2 emissions source at 00:00, 12:00, and 24:00 UT into a
given simulation day.

The model results are identical at hour 0 due to both
the OS2.5 and OS1km models being initialized from the
OS10 km data at this time (small differences between Fig. 5a
and b are due to slight mismatches in the cross section loca-
tions). Subsequent cross sections show the OS1km model is
capable of resolving both higher absolute mixing ratio val-
ues, and sharper gradients, within 12 h of simulation time
(Fig. 5c, d). Multiple plumes are resolved by 12 h of simu-
lation time in the 1 km grid-cell size simulation, along with
markedly different plume heights, plume structure, and an in-
crease of a factor of 2 in the magnitude of plume mixing ra-
tios relative to the lower grid-cell size simulation, and these
differences persist into the 24th simulation hour (Fig. 5e,
f). Mixing ratio differences of these magnitudes are to be
expected given the increase in resolution, but Fig. 5 shows
that other important aspects of the predicted plumes have
changed. The plume heights are a function of predicted local
stability conditions in the grid square containing the source,
and the variation shown here represents a substantial change
in the predicted local stability for the origin sources of these
plumes, resulting from the change in model horizontal grid-
cell size.

Figure 6 compares the maximum surface SO2 during the
entire period for each simulation, as well as the difference in
maximum SO2 between the simulations, along with a scatter
plot of OS2.5 vs. OS1km simulation results. In the latter two
panels, OS2.5km values were assigned to the corresponding
OS1km grid-cell locations using the nearest-neighbour ap-
proach.

The maximum surface concentrations tend to show more
elongated structures at the smaller grid-cell size, comparing
Fig. 6a and b, particularly for plumes in the western (left)
half of the OS1km domain. The difference plot (Fig. 6c)
shows that local maximum concentration differences of up to
−45 ppbv occur, due to changes in the placement and maxi-
mum concentration of high-concentration plumes. The scat-
ter plot of Fig. 6d shows that OS1km model has a demon-
strated ability to achieve higher concentrations than the
OS2.5km model, with a slope of 1.22, and a noticeable clus-
tering of values along the 1 : 2 line. While these results are
not unexpected since approximately 95 % of the SO2 emis-
sions in the domain originate in large stack, or point, sources,
and hence initial concentrations at source would be expected
to 6.25× higher in the OS1km simulation, they also suggest
that a substantial improvement in the OS1km model’s abil-
ity to capture SO2 concentrations should be possible. That
is, the results of the two models are substantially different,
and given the reduction in numerical error expected with em-
ploying a smaller grid-cell size, the latter might be expected
to outperform a larger grid-cell size model. However, as we

shall demonstrate in the next section, plume placement er-
rors such as those depicted in Fig. 3 play a substantial role in
model performance as grid-cell size decreases.

3.2 Quantitative comparisons

3.2.1 Surface observation comparison

The locations of the local network of 10 surface monitoring
stations located near the sources of emissions in the region
(oil sands facilities) are shown in Fig. 7. As noted in Sect. 2.4,
we carry out several analyses:

1. The standard evaluation. The model values are ex-
tracted from the model grid cells containing the obser-
vation stations, at both grid-cell sizes.

2. Equal areas of representativeness, 1 and 2.5 km grid-
cell sizes. The nearest nine OS1km grid cells are com-
pared to the OS2.5km single cell evaluation in two
ways:

a. averaging of the OS1km results across the nine
grid cells prior to evaluation (to determine whether
the mean value is better represented by the smaller
grid-cell size, similar to the approach taken in Kang
et al., 2007);

b. selection of the best of the nine grid cells (closest
to the observation value), to determine the extent to
which the OS1km model is capable of better rep-
resenting the concentrations somewhere within the
corresponding OS2.5km model grid cell, if not at
the OS1km cell closest to the observation location
– higher scores for the 1 km grid-cell size simula-
tion in this case would indicate that while errors in
plume positioning (for example due to errors in the
synoptic-scale flow) negate some of the advantages
of the OS1km simulation, the plume may be bet-
ter represented by the OS1km simulation within the
2.5 km grid cell’s area.

3. Equal areas of representativeness and equal regions of
variability. The nearest 9 2.5 km cells are compared to
the nearest 49 1 km cells. Here we make the assumption
that the 2.5 km grid-cell size model’s ability to resolve
features is limited to the surrounding three grid cells in
each horizontal dimension and make use of the closest-
in-size block of corresponding 1 km cells (a 7× 7 grid
centered on the cell containing the observation point). In
both cases, the model value closest to the observations
is chosen prior to evaluation.

While evaluations (Figs. 2b and 3) deliberately select the
“best” value, they also provide a quantitative estimate of the
extent to which each model is capable of achieving the cor-
rect answer within roughly equal representative areas cen-
tered on the observation station locations. These comparisons
are intended to evaluate
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Figure 5. Comparison of simulated SO2 plume mixing ratios (ppbv) located 0.2 km from a major point source, for OS2.5km simulations (a,
c, e) and OS1km simulations (b, d, f), at 0 (a, b), 12 (c, d), and 24 h (e, f) into a 24 h simulation.

a. the extent to which the 1 km grid-cell size is capable of
improving simulation results despite, for example, the
larger-scale flow resulting in errors in the plume place-
ment, and

b. whether the 1 km grid-cell size model is capable of out-
performing the 2.5 km grid-cell size model over equiv-
alent regions.

In the last test, we place both models on an equal footing
with regards to the region being represented, as well as with

regards to allowing cell-to-cell variability and the selection
of a closest match to observations.

Our evaluation is presented as tables of statistical metrics.
The comparisons employing the nearest-neighbour approach
are described with a “Bn” superscript suffix, denoting that
the “best” sample within a square centered on the observa-
tion point containing a total of n grid cells (e.g. the OS1kmB9

label denotes a comparison between observed data and the
simulation grid cell within a 3× 3 grid-cell square centered
about the observation point). Similarly, an An superscript de-
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Figure 6. Comparison of total-simulation maximum surface SO2 mixing ratios (ppbv) at (a) 2.5 km and (b) 1 km grid-cell size (ppbv).
(c) Difference (2.5− 1 km). (d) Scatter plot of 2.5 km (x axis) versus 1 km (y axis) total simulation average grid-cell surface SO2 mixing
ratios.

scribes a comparison between the observations and the aver-
age of the n square of grid cells centered on the observation
point.

Comparisons to surface concentrations were performed
using publicly available data collected by the Wood Buffalo
Environmental Association (WBEA), which operates the air-
quality monitoring network residing within the OS1km do-
main. The monitoring station locations are shown in Fig. 7.
The statistical performance of the models, calculated using
the procedure outlined above, are given in Tables 2 through
5, for SO2, NOx , O3, and PM2.5, respectively.

In the standard model grid cell to observation measure-
ment comparison for SO2 and NOx (first two columns, Ta-
bles 2 and 3), the OS1km simulation had worse scores for
all the metrics considered here. For O3, the OS1km model
had the better score for the correlation coefficient and root
mean square error, and worse scores for all remaining model
evaluation metrics. For PM2.5, the OS1km model showed a
better performance for the correlation coefficient and biases,
while the OS2.5km model outperforms the OS1km model for

all other metrics examined here. Based on a standard analy-
sis, the OS1km model thus performs poorly compared to the
OS2.5km model; the expected advantages associated with re-
duced numerical error in transport at smaller grid-cell sizes
are being offset by other factors controlling the net model
error.

When the standard evaluation is compared to the average
of the nearest nine 1 km simulation grid cells surrounding
the observation point (third column of the tables), an in-
termediate result appears. For SO2 (Table 2) the nine-cell
OS1km average has the best performance for correlation co-
efficient – indicating a better time distribution of events may
be achieved by a nine-cell average at 1 km grid-cell size. The
other metrics for the A9 simulation are intermediate between
the two standard evaluations for each simulation, indicating
that some of the performance loss resulting from the use of
1 km grid-cell size is reduced through averaging results to ap-
proximately the same size regions as the OS2.5km grid-cell
size. The latter result holds for all metrics for NOx (including
R, see Table 3). For ozone (Table 4), averaging the nine near-
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Figure 7. Illustration of the OS1km domain, with observation station locations. (a) Entire domain. (b) Close-up view of station locations.
Monitoring stations are shown as purple outline squares in both images. Light grey regions in the background satellite image (b) are oil sands
open-pit mining operations.

est OS1km grid cells prior to measurement gives the best per-
formance for R and RMSE, and worse performance for the
other metrics. For PM2.5 (Table 5), all metrics for the OS1km
nine grid-cell average aside from the bias fall mid-way be-
tween the two standard methodology evaluations. Averaging
the smaller grid-cell size model results thus shows a marginal
improvement, depending on the species, but overall does not
compensate for the decrease in performance resulting from
going to the smaller grid-cell size.

We next ask the question, “does a more accurate simula-
tion value exist within the same region of the 1 km model
as is encompassed by a 2.5 km grid cell?” (fourth column
of Tables 2–5), by selecting the model value in the nearest
nine 1 km grid cells with the closest match to observations
and comparing to the corresponding single 2.5 km grid cell.
A dramatic improvement in the relative OS1km performance
metric scores can be seen. For each of Tables 2 through 5, this
“best of nine” 1 km comparison outperforms the previous 3
comparisons (columns 1 through 3), for all metrics. These
improvements are sometimes dramatic (e.g. a doubling of
correlation coefficient along with a reduction in mean bias
by a factor of 3, a reduction of NOx mean bias values by a
factor of 3, a shift of coefficient of error from negative to pos-
itive values for O3, and a reduction in the coefficient of error
for PM2.5 by a factor of 2.5 compared to the nearest com-
peting value from the previous evaluations. The coefficients
of efficiency for SO2 and O3 make the transition from nega-
tive to positive values when the “best-of-nine” methodology
is used, indicating that the model is able to predict the ob-
servations better than the observed mean, somewhere within

an equivalent area. This evaluation suggests that the OS1km
model does contain a better result within the same approxi-
mate region encompassed by a 2.5 km grid cell. However, the
location of that better result may be subject to positioning er-
ror, such as those described in Fig. 3.

A valid argument could be made that the methodology em-
ployed in this fourth evaluation is subject to selection bias,
in that the selection of a best value in the case of the near-
est nine 1 km simulation places that model simulation at an
advantage relative to the 2.5 km model. To address this last
issue, the final two additional methodologies for evaluation
were employed, still maintaining the same approximate area
of representativeness for a grid cell, namely choosing the best
value out of the nearest 9 2.5 km grid cells (the limiting reso-
lution of this model simulation), and the best value out of the
nearest 49 1 km grid cells (fifth and sixth columns, respec-
tively, of Tables 2 through 5). That is, we attempt to place
the two models on an equal basis with regards to selection
bias within a given region containing an observation station.

Two important results can be seen from this final eval-
uation. First, as was the case for the “best of 9” for the
OS1km simulation compared to the standard OS1km evalua-
tion, the best of 9 for the OS2.5km simulation has a consid-
erably better performance than the standard OS2.5km evalu-
ation (compare fifth and first columns, Tables 2 through 5).
That is, the OS2.5km model may also be subject to location
errors in transported species representation which influence
model performance. However, when performance within the
56.25 km2 area surrounding each measurement point in the
OS2.5km best of 9 evaluation is compared to the 49 km2 area
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surrounding the measurement points in the OS1km best of
49 simulation (i.e. compare columns five and six in Tables 2
through 5), it can be seen that the OS1km model outperforms
the OS2.5km model for all metrics for O3 and PM2.5, and all
metrics aside from bias for SO2 and NOx . That is, despite the
OS1km model having a slight disadvantage in the relative
size of the representative area containing the measurement
station location, and both models being allowed a similar se-
lection strategy, the OS1km model is capable of generating
values closer to the observations than the OS2.5km model
within an equivalent sub-region, across most of the metrics
and chemical species considered here.

This final result is strongly suggestive of the presence of
issues such as those illustrated in Fig. 3. These may include
errors in the larger-scale synoptic wind flow, combined with
the reduced size of plumes as grid-cell size is reduced, lead-
ing to more “misses” than “hits” for a given recorded event at
a measurement station compared to the coarse grid-cell size
model. There may be multiple additional causes for such er-
rors (examples include poor observation density in the region
for model initialization, underlying lower-resolution bound-
ary condition fields such as topography not improving with
the reduction in grid-cell size, inaccuracies in land use fields
used in meteorological modelling due to rapid development,
and errors in other aspects of the reaction transport mod-
elling system aside from horizontal resolution). The expected
advantages of the small grid-cell size, such as better repre-
sentation of the concentrations of species within plumes and
hence better representation of their reactive chemistry (see
for example Lonsdale et al., 2012), may be lost in a standard
performance analysis due to these other issues.

Our analysis suggests that a practical limit in the benefits
of increasing model accuracy may be reached when resolu-
tion exceeds some threshold, as a result of other errors inher-
ent in the modelling system. However, the analysis also sug-
gests that if these non-resolution-related errors are corrected,
the benefits of adopting a smaller grid-cell size may be sub-
stantial. For example, meteorological data assimilation em-
ploying a dense monitoring network for a specific area of in-
terest would be expected to show a greater impact for smaller
rather than larger grid-cell sizes, due to the greater ability of
the former to take advantage of the observation density in
correcting the initial meteorological state. We note that re-
cent work applying land use data assimilation (Carrera et al.,
2015) to regional 2.5 km grid-cell size weather simulations
(Milbrandt et al., 2016) have suggested that such data assim-
ilation may indeed improve forecast skill at the very local
scale.

The surface observation data were also analyzed by the
time of day, with both observations and simulations split
into daytime (09:00 to 18:00 LT) and nighttime (19:00 to
08:00 LT) data pairs (Appendix A, Tables A1 through A8;
Carslaw and Ropkins, 2012). Within each of these diurnally
segregated time periods, the broad aspects of the compari-
son were the same as for the “all data” Tables 2 to 5 above:

the OS1km simulations tended to have reduced performance
in a standard analysis, averaging improved but did not com-
pletely ameliorate the performance of the OS1km simula-
tion, a methodology employing the best of nine OS1km grid
cells had superior performance to the two standard compar-
isons, and comparison of the “best of” methodologies for
equal areas showed better performance for the OS1km com-
pared to the OS2.5km simulation. We also noted substan-
tial differences in the day and night performance of both
models across the methodologies. For example, daytime SO2
and NOx performance within a given model and compari-
son methodology was usually better than nighttime perfor-
mance for IOA, R, NMGE, COE, and NMB, while worse for
RMSE, while nighttime O3 performance was better for IOA,
r , NMGE, and COE. Daytime PM2.5 performance was better
than nighttime for IOA, r , COE, and NMB. The study area
is located in a broad river valley with frequent slope-defined
anabatic/akatabic and drainage flow events. These often have
a diurnal nature, and may explain part of the day–night differ-
ences. Example sources of these differences may include the
relative ability of the driving meteorological model to cap-
ture daytime versus nighttime mixed layer turbulence and the
planetary boundary layer height.

3.2.2 Comparisons to aircraft observations

A total of 22 aircraft observation flights were carried out dur-
ing the study simulation period – here we present statistical
comparisons using the standard approach only (model grid
cell containing the observation point to observation data at
the aircraft location). Model values were linearly interpo-
lated in time and space to the aircraft observation locations
and times (aircraft observations were on a 10 s interval.) We
begin with a composite comparison across all observation
times, in Table 6.

The results are in general similar to the surface analysis,
in that the OS1km simulation tended to have worse perfor-
mance than the OS2.5km simulation (exceptions being the
biases for both SO2 and NO2, and the slightly better OS1km
correlation coefficient for SO2). One striking difference be-
tween the first two columns of Tables 2 and 3, compared
to Table 6, is the magnitude of the differences between the
simulations. Aloft (Table 6), the differences in performance
metric magnitudes between OS2.5 and OS1km simulations
are much smaller than at the surface (Tables 3 and 4). The
biases are negative aloft and positive at the surface, indicat-
ing that both models may be lofting plumes to insufficient
distances; one of the possible (non-horizontal grid-cell-size-
dependent) causes of model error may be in the extent of
vertical transport. This possibility is examined in more detail
in Akingunola et al. (2018) and Gordon et al. (2018). An ex-
ample of this behaviour is shown in Fig. 8; both plumes fumi-
gate to the surface, while the observed plume resides largely
aloft. The OS1km model captures the higher concentrations
to a better degree, but the impact of excessive fumigation
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Table 2. Surface SO2 observations to model comparison for entire simulation period (ppbv, 5466 model–observation pairs).

Evaluation metric OS2.5km OS1km OS1kmA9 OS1kmB9 OS2.5kmB9 OS1kmB49

Index of agreement 0.237 0.154 0.207 0.601 0.701 0.810
Pearson correlation coefficient 0.290 0.230 0.295 0.604 0.672 0.848
Normalized mean gross error 2.128 2.363 2.212 1.114 0.834 0.529
Mean gross error 2.918 3.240 3.034 1.528 1.143 0.725
Coefficient of error −0.525 −0.693 −0.585 0.202 0.403 0.621
Root mean square error 7.063 9.665 7.876 4.436 3.671 2.618
Normalized mean bias 1.130 1.376 1.299 0.347 −0.010 0.017
Mean bias 1.550 1.887 1.781 0.475 −0.013 0.024

Table 3. Surface NOx observations to model comparison for entire simulation period (ppbv, 3257 model–observation pairs).

Evaluation metric OS2.5km OS1km OS1kmA9 OS1kmB9 OS2.5kmB9 OS1kmB49

Index of agreement 0.177 0.138 0.152 0.416 0.589 0.665
Pearson correlation coefficient 0.143 0.114 0.116 0.165 0.305 0.388
Normalized mean gross error 1.520 1.593 1.567 1.079 0.760 0.619
Mean gross error 12.898 13.518 13.296 9.156 6.447 5.255
Coefficient of error −0.646 −0.725 −0.697 −0.168 0.177 0.329
Root mean square error 28.052 35.197 34.644 25.782 15.315 13.704
Normalized mean bias 0.493 0.570 0.542 0.174 −0.027 −0.063
Mean bias 4.183 4.834 4.597 1.477 −0.231 −0.531

more than offsets this improvement, as is shown by the per-
formance evaluation of Table 7, where both models have neg-
ative biases aloft. In this particular case, the tendency of the
model to overestimate the extent of fumigation has a bigger
impact on performance than grid-cell size. Garcia-Menendez
et al. (2014) have noted similar results for forest fire plume
prediction.

Figure 8a and c provide a further example of the kind of
situation referenced in Fig. 3; surface monitoring station lo-
cations are depicted as grey circles, one of which is identi-
fied with a pink arrow. This station lies within the plume at
2.5 km resolution (Fig. 8a), and outside of the plume at 1 km
resolution (Fig. 8c). While the plume direction is the same
at both scales, that is, the large-scale wind field controls the
positioning of the plume axis, the smaller grid-cell size simu-
lation places a stronger constraint on the accuracy of the wind
field. For example, if the simulated large-scale flow direction
was inaccurately predicted by only a few degrees, the plume
would not appear in the 1 km simulation time series at this
location but would register as present in the 2.5 km simula-
tion. Nevertheless, the plume maximum concentration is bet-
ter captured by the smaller grid-cell size simulation (compare
maximum values in observed aircraft SO2; Fig. 8b, d). The
higher-resolution simulation may thus more accurately sim-
ulate the plume maximum concentration – but not its place-
ment in space, as was hypothesized in Fig. 3.

Meanwhile other flights show a clear advantage of the
OS1km model. One example is given by the NO2 perfor-
mance evaluation of Table 8 and depicted in Fig. 9, for Flight

17 (a similar flight plan carried out around the same facil-
ity as Flight 8). While the correlation coefficient degraded
slightly in the OS1km resolution simulation, all other perfor-
mance measures were improved with the decrease in grid-
cell size. Two time-versus-height-profile cross sections for
Flight 17 are shown in Fig. 9. In Fig. 9a and b, the OS2.5km
and OS1km simulations, respectively, are compared for the
portion of the overall flight track circling the given facility.
This comparison clearly shows that the OS1km model does a
better job of capturing the width of the high-concentration
region of the plume – however, the location of the model
plume lags the observations. During this portion of the flight
alone, the OS2.5km model statistics, particularly the corre-
lation coefficient, outperform the OS1km model, due to this
issue of plume location mismatching. Figure 9a and b may
be compared to Fig. 3a and b – the same situation is de-
picted in both figures. Figure 9c and d show the OS2.5km
simulation (Fig. 10c) and OS1km simulation results in an-
other portion of the flight – here the OS1km performance for
most statistics was better than the OS2.5km model perfor-
mance. The OS1km model (Fig. 9d) captures the existence
of a lower-concentration layer aloft in the right-hand side
of the cross section, and the existence of low-concentration
intervening layers, as well as the overall lower concentra-
tions of SO2, while the OS2.5km model does not resolve
these fine-scale and lower-concentration features. We note
here that IoA, COE, and the other error measures capture
the visual impression that the OS1km model outperforms the
OS2.5km model for this flight, while the correlation coef-
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Table 4. Surface O3 observations to model comparison for entire simulation period (ppbv, 2189 model–observation pairs).

Evaluation metric OS2.5km OS1km OS1kmA9 OS1kmB9 OS2.5kmB9 OS1kmB49

Index of agreement 0.414 0.405 0.404 0.527 0.637 0.690
Pearson correlation coefficient 0.496 0.506 0.515 0.606 0.688 0.738
Normalized mean gross error 0.660 0.670 0.672 0.534 0.410 0.349
Mean gross error 10.757 10.915 10.949 8.692 6.673 5.687
Coefficient of error −0.172 −0.189 −0.193 0.053 0.273 0.380
Root mean square error 16.040 15.859 15.794 13.305 11.084 9.719
Normalized mean bias 0.527 0.559 0.579 0.463 0.337 0.304
Mean bias 8.579 9.104 9.431 7.536 5.488 4.945

Table 5. Surface PM2.5 observations to model comparison for entire simulation period (µg m−3, 3377 model–observation pairs).

Evaluation metric OS2.5km OS1km OS1kmA9 OS1kmB9 OS2.5kmB9 OS1kmB49

Index of agreement 0.280 0.262 0.267 0.412 0.508 0.572
Pearson correlation coefficient 0.201 0.216 0.214 0.314 0.376 0.466
Normalized mean gross error 0.791 0.811 0.806 0.647 0.541 0.471
Mean gross error 5.342 5.478 5.441 4.365 3.651 3.181
Coefficient of error −0.439 −0.476 −0.466 −0.176 0.016 0.143
Root mean square error 8.286 8.786 8.663 7.117 6.169 5.690
Normalized mean bias −0.268 −0.257 −0.257 −0.289 −0.299 −0.287
Mean bias −1.812 −1.734 −1.736 −1.948 −2.016 −1.937

ficient is highly dependent on the placement of the plume
maximum in the upper two panels.

These and the snap-shot comparisons described in
Sect. 3.1 show that the higher-resolution model is having a
significant impact on predictions – however, other aspects of
the overall model performance are preventing the potential
benefits of higher resolution from influencing the standard
performance evaluation.

4 Discussion

A key result of our current work is that 1 km grid-cell size
simulations resulted in improved prediction of plume con-
centration maxima relative to 2.5 km grid-cell size simula-
tions, despite having no improvement using standard scoring
methodologies. We also have described a scoring approach
wherein these potential advantages of higher resolution may
be quantified. We believe that flow field effects such as those
described in Fig. 3 are a general result of increasing grid res-
olution, but note important caveats, which include the fol-
lowing:

1. The availability of meteorological observation and
high-resolution emissions data to provide model driv-
ing information, and the resolution and proximity of this
information to the simulation location. Both will influ-
ence the relative importance of grid-cell size on model
results. If this information is available in a higher reso-
lution than the lower of two grid-cell size simulations

being compared, and/or is used via data assimilation
to improve model initial meteorological conditions, our
expectation is that the smaller grid-cell size model may
outscore the larger grid-cell size model, even for more
standard metrics.

2. The extent to which local, versus synoptic, weather con-
ditions drive flow in a given region. For example, in the
urban heat island meteorological simulations of Leroyer
et al. (2014), the accuracy of local flow predictions was
shown to be extremely dependent on the representation
of the urban heat island, and the accuracy of the lat-
ter was critically dependent on the grid-cell size (which
in this example went down to 250 m). In this respect,
for meteorological conditions wherein local factors can
dominate the flow, and where those conditions may be
adequately modelled only at very high resolution, we
would again expect the smaller grid-cell size simulation
to provide better performance, for standard metrics.

3. The results apply as grid-cell size decreases, but are not
necessarily true for grid-cell size increases. Conversely,
model performance using standard metrics should not
be expected to increase with successively larger and
larger grid sizes; the accuracy of even the synoptic flow
field will not be captured as model resolution decreases.

Given these considerations, we recommend that modellers
should attempt successively smaller grid-cell sizes to deter-
mine the following: first, the point at which, for their particu-
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Table 6. Aircraft observation comparisons, SO2 and NO2 (ppbv).

SO2 (21 787 samples) NO2 (18 310 samples)

OS2.5km OS1km OS2.5km OS1km

Index of agreement 0.63 0.62 0.61 0.58
Pearson correlation coefficient 0.26 0.28 0.39 0.34
Normalized mean gross error 1.07 1.09 0.90 0.96
Mean gross error 3.98 4.06 1.56 1.68
Coefficient of error 0.27 0.25 0.23 0.17
Root mean square error 12.84 13.97 3.12 3.62
Normalized mean bias −0.31 −0.29 −0.26 −0.20
Mean bias −1.17 −1.07 −0.45 −0.34

Figure 8. Comparison between OS2.5km (a, b) and OS1km (c, d) simulations for SO2 relative to aircraft observations (ppbv). (a, c) Simu-
lated surface concentrations of SO2, with the flight track shown as a red line. Grey circles: surface monitoring station locations; pink arrow
indicates a station located inside a plume at 2.5 km resolution (a), and outside the plume at 1 km resolution (c). (b, d) Portion of the sim-
ulated concentration profiles along the flight path as a function of time. Successive intersections of the flight path with the plume appear
as background colour contours; observed SO2 aboard the aircraft is shown between the two black lines. Vertical axis is elevation above the
ground; the aircraft elevation is increasing with successive passes around the facility. Dotted lines show the upper and lower vertical extent
of the observed plume; note that for both model simulations, the plume erroneously fumigates the surface.

Table 7. Standard performance evaluation of Flight 8 for SO2
(ppbv, 1261 model–observation pairs).

OS2.5km OS1km

Index of agreement 0.69 0.68
Pearson correlation coefficient 0.42 0.31
Normalized mean gross error 1.04 1.09
Mean gross error 4.02 4.25
Coefficient of error 0.39 0.35
Root mean square error 16.72 20.57
Normalized mean bias −0.42 −0.34
Mean bias −1.63 −1.32

Table 8. Standard performance evaluation of Flight 17 for NO2
(ppbv, 1174 model–observation pairs).

OS2.5km OS1km

Index of agreement 0.26 0.58
Pearson correlation coefficient 0.26 0.25
Normalized mean gross error 2.03 1.15
Mean gross error 0.52 0.29
Coefficient of error −0.48 0.16
Root mean square error 1.37 0.70
Normalized mean bias 0.83 −0.54
Mean bias 0.21 −0.14
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Figure 9. Flight 17 comparison for NO2 (ppbv) for portions of the net flight track circling the CNRL facility for OS2.5km (a) and OS1km (b)
simulations, and for a later section of the same flight path for the OS2.5km (c) and OS1km (d) simulations.

lar system and simulation location, subsequent grid-cell size
reductions fail to improve performance, and second, to make
use of still higher resolutions for studies wherein the point-
to-point comparison is less important, and other factors such
as accurately capturing the plume chemistry are more crucial.

5 Summary and conclusions

Our work suggests the following: decreasing air-quality
model horizontal grid-cell size will not necessarily result
in improvements to model performance in standard perfor-
mance evaluations, in which the model values at the grid
cells encompassing measurement location stations are used
in a pairwise comparison to observations. Other considera-
tions, such as the accuracy of the larger-scale wind direction

and speed forecast, and the accuracy of the plume rise pa-
rameterization used within the model may play a greater role
in the overall performance of the model, and reduce the ben-
efits of the smaller grid-cell size. In the context of a standard
model performance evaluation, there may be fixed limits to
the benefits of decreasing model grid-cell size.

Despite this difficulty, our results also show that the use
of smaller grid-cell sizes have some potential benefits, in
that these models do a better job of resolving specific air
pollution features, like high-concentration maxima within
plumes. Both coarse and fine grid-cell size plumes may be
misplaced in both time and space, with the net result that
the latter model has a worse performance in a standard com-
parison, but is nevertheless more likely to capture the cor-
rect in-plume concentrations, and hence the chemistry, of the
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actual plume, in the neighbourhood of the observation lo-
cation. When the evaluation is broadened to find the closest
fit to observations in the vicinity of the observation station,
with models confined to a similar representative area around
the observation station, these potential benefits of the smaller
grid-cell size become apparent.

Our results should not be taken as an indication that the
standard metrics for model comparison are in some way
flawed – they provide the most rigorous method for eval-
uating the performance of a model at specific monitoring
locations and specific times. However, the ancillary perfor-
mance assessment methodology presented here shows that
models with very small grid sizes, which may have standard
performance metric scores that have not improved or have
even degraded relative to larger grid-cell size models, nev-
ertheless have scientific value, in terms of being better able
to capture plume concentrations and hence plume chemistry,
if not plume position. The work also suggests that the pre-
diction accuracy of very local transport conditions may be
a large factor in preventing the smaller grid-cell size mod-
els from achieving improved performance in standard per-
formance analyses.

These findings suggest that at the current state of develop-
ment, VHR air-quality models are of benefit for the specific
purpose of chemical process studies, in which the main aim
of the work is to accurately simulate plume chemistry – and
in which accurate forecasting of the position of the plume in
time and space is a secondary concern. Our work also sug-
gests that efforts to improve other aspects of the overall mod-
elling framework which improve the large-scale flow (for
example, the use of data assimilation of local meteorology
to improve wind direction predictions) may result in greater
benefits as smaller grid-cell sizes are employed.

Data availability. Surface station air monitoring data
used in this study were obtained and are publicly avail-
able from the Wood Buffalo Environmental Association
(https://wbea.org/network-and-data/monitoring-stations/, last
access: 1 April 2019). The 2013 aircraft data used in this
study are available from the Oil Sands Monitoring site
(http://donnees.ec.gc.ca/data/air/monitor/ambient-air-quality-
oil-sands-region/pollutant-transformation-summer-2013-aircraft-
intensive-multi-parameters-oil-sands-region/?lang=en, last access:
1 April 2019). GEM-MACH model output data generated for
this study are available on email request to Paul A. Makar
(paul.makar@canada.ca).

The model output generated from the study requires a large
amount of memory space (several gigabytes per day of simulation)
in a binary format specific to Environment and Climate Change
Canada’s modelling systems. The size of the files precludes mainte-
nance on a public site, but conversion to other formats and arrange-
ments for uploading may be made on request to Environment and
Climate Change Canada at paul.makar@canada.ca.

Atmos. Chem. Phys., 19, 4393–4417, 2019 www.atmos-chem-phys.net/19/4393/2019/

https://wbea.org/network-and-data/monitoring-stations/
http://donnees.ec.gc.ca/data/air/monitor/ambient-air-quality-oil-sands-region/pollutant-transformation-summer-2013-aircraft-intensive-multi-parameters-oil-sands-region/?lang=en
http://donnees.ec.gc.ca/data/air/monitor/ambient-air-quality-oil-sands-region/pollutant-transformation-summer-2013-aircraft-intensive-multi-parameters-oil-sands-region/?lang=en
http://donnees.ec.gc.ca/data/air/monitor/ambient-air-quality-oil-sands-region/pollutant-transformation-summer-2013-aircraft-intensive-multi-parameters-oil-sands-region/?lang=en


M. Russell et al.: An evaluation of the efficacy of very high resolution air-quality modelling 4411

Appendix A: Model evaluation statistics

Table A1. Model comparison statistics.

Metric and formula Range Ideal score

Index of agreement (IOA) =


1−

∑
|Mi−Oi |

2
(
Oi−O

) , when
∑
|Mi −Oi | ≤ 2

(
Oi −O

)
2
(
Oi−O

)∑
|Mi−Oi |

− 1, when
∑
|Mi −Oi |> 2

(
Oi −O

) [−1,1] 1

Coefficient of error (COE)= 1−
∑
|Mi−Oi |(
Oi−O

) . [−∞,1] 1

Mean bias (MB)= 1
N

∑
(Mi −Oi)=M −O. 0

Mean gross error (MGE)= 1
N

∑
|Mi −Oi | . 0

Normalized mean bias (NMB)=

∑
(Mi−Oi )∑

Oi
=

(
M

O
− 1

)
. 0

Normalized mean gross error (NMGE)=

∑
|Mi−Oi |∑

Oi
. 0

Root mean square error (RMSE)=

√
1
N

∑
(Mi −Oi)

2. 0

Pearson correlation coefficient (r)=

∑(
Mi−M

)(
Oi−O

)√∑(
Mi−M

)2∑(
Oi−O

)2 . [−1.1] 1

The limits on the summations were removed for brevity; all are from i = 1 to N where N is the number of observation–model pairs, Mi is the ith
model value, O is the ith observation value, and MO are the model and observed mean values, respectively.

Appendix B: Day versus night model performance for
the different testing methodologies

Table B1. Surface SO2 observations to model comparison, daytime (09:00–18:00 LT) (ppbv, 2119 model–observation pairs).

OS2.5km OS1km OS1kmA9 OS1kmB9 OS2.5kmB9 OS1kmB49

IoA 0.374 0.286 0.352 0.712 0.762 0.872
r 0.295 0.215 0.307 0.701 0.742 0.903
NMGE 1.739 1.982 1.798 0.799 0.660 0.356
MGE 4.201 4.788 4.343 1.931 1.595 0.860
COE −0.253 −0.428 −0.295 0.424 0.524 0.744
RMSE 9.317 13.388 10.275 5.171 4.652 2.996
NMB 0.730 0.990 0.871 0.054 −0.166 −0.118
MB 1.764 2.391 2.104 0.132 −0.401 −0.286

www.atmos-chem-phys.net/19/4393/2019/ Atmos. Chem. Phys., 19, 4393–4417, 2019



4412 M. Russell et al.: An evaluation of the efficacy of very high resolution air-quality modelling

Table B2. Surface SO2 observations to model comparison, nighttime (18:00–09:00 LT) (ppbv, 3347 model–observation pairs).

OS2.5km OS1km OS1kmA9 OS1kmB9 OS2.5kmB9 OS1kmB49

IoA −0.215 −0.248 −0.233 0.231 0.473 0.609
r 0.204 0.206 0.205 0.339 0.421 0.620
NMGE 3.143 3.281 3.215 1.896 1.300 0.964
MGE 2.061 2.152 2.108 1.243 0.852 0.632
COE −1.549 −1.607 −1.607 −0.537 −0.054 0.218
RMSE 5.055 5.450 5.450 3.802 2.858 2.313
NMB 2.166 2.328 2.328 1.076 0.394 0.361
MB 1.421 1.527 1.527 0.706 0.258 0.230

∗ 3347 samples used.

Table B3. Surface NOx observations to model comparison, daytime (09:00–18:00 LT) (ppbv, 1252 model–observation pairs).

OS2.5km OS1km OS1kmA9 OS1kmB9 OS2.5kmB9 OS1kmB49

IoA 0.485 0.440 0.465 0.639 0.712 0.789
r 0.254 0.259 0.270 0.427 0.507 0.680
NMGE 0.927 1.009 0.962 0.650 0.519 0.380
MGE 7.502 8.160 7.786 5.259 4.198 3.077
COE −0.030 −0.120 −0.069 0.278 0.424 0.577
RMSE 14.843 15.811 15.571 11.272 9.982 7.964
NMB −0.205 −0.069 −0.135 −0.258 −0.258 −0.216
MB −1.659 −0.559 −1.091 −2.089 −2.091 −1.744

Table B4. Surface NOx observations to model comparison, nighttime (18:00–09:00 LT) (ppbv, 1862 model–observation pairs).

OS2.5km OS1km OS1kmA9 OS1kmB9 OS2.5kmB9 OS1kmB49

IoA −0.016 −0.050 −0.045 0.275 0.511 0.587
R 0.113 0.081 0.083 0.118 0.240 0.295
NMGE 1.913 1.982 1.971 1.366 0.920 0.777
MGE 17.235 17.858 17.756 12.306 8.291 7.004
COE −1.032 −1.105 −1.093 −0.451 0.023 0.174
RMSE 35.003 44.669 43.972 32.797 18.475 16.875
NMB 0.958 0.988 0.990 0.458 0.126 0.039
MB 8.634 8.899 8.915 4.124 1.139 0.350
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Table B5. Surface O3 observations to model comparison, daytime (09:00–18:00 LT) (ppbv, 864 model–observation pairs).

OS2.5km OS1km OS1kmA9 OS1kmB9 OS2.5kmB9 OS1kmB49

IoA 0.141 0.192 0.184 0.338 0.396 0.529
r 0.166 0.215 0.211 0.327 0.367 0.504
NMGE 0.660 0.621 0.627 0.508 0.464 0.361
MGE 14.427 13.568 13.703 11.111 10.143 7.901
COE −0.718 −0.616 −0.632 −0.323 −0.208 0.059
RMSE 21.209 20.063 20.035 16.714 15.140 12.466
NMB 0.587 0.542 0.557 0.454 0.414 0.326
MB 12.839 11.854 12.187 9.918 9.050 7.121

∗ 864 samples used.

Table B6. Surface O3 observations to model comparison, nighttime (18:00–09:00 LT) (ppbv, 1247 model–observation pairs).

OS2.5km OS1km OS1kmA9 OS1kmB9 OS2.5kmB9 OS1kmB49

IoA 0.451 0.398 0.399 0.534 0.719 0.727
r 0.526 0.541 0.557 0.642 0.784 0.784
NMGE 0.706 0.775 0.773 0.600 0.361 0.352
MGE 8.326 9.132 9.116 7.070 4.258 4.145
COE −0.097 −0.203 −0.201 0.068 0.439 0.454
RMSE 11.236 12.029 11.974 10.297 6.935 7.137
NMB 0.492 0.624 0.651 0.510 0.262 0.296
MB 5.799 7.359 7.668 6.008 3.088 3.491

Table B7. Surface PM2.5 observations to model comparison, daytime (09:00–18:00 LT) (µg m−3, 1862 model–observation pairs).

OS2.5km OS1km OS1kmA9 OS1kmB9 OS2.5kmB9 OS1kmB49

IoA 0.372 0.356 0.364 0.495 0.555 0.625
r 0.232 0.244 0.245 0.350 0.387 0.493
NMGE 0.816 0.837 0.827 0.657 0.579 0.487
MGE 5.470 5.608 5.542 4.402 3.879 3.266
COE −0.256 −0.288 −0.272 −0.011 0.109 0.250
RMSE 9.607 10.312 10.034 8.059 7.286 6.626
NMB −0.189 −0.152 −0.166 −0.231 −0.281 −0.258
MB −1.264 −1.016 −1.109 −1.546 −1.881 −1.726

www.atmos-chem-phys.net/19/4393/2019/ Atmos. Chem. Phys., 19, 4393–4417, 2019



4414 M. Russell et al.: An evaluation of the efficacy of very high resolution air-quality modelling

Table B8. Surface PM2.5 observations to model comparison, nighttime (18:00–09:00 LT) (µg m−3, 1862 model–observation pairs).

OS2.5km OS1km OS1kmA9 OS1kmB9 OS2.5kmB9 OS1kmB49

IoA 0.193 0.170 0.173 0.337 0.471 0.528
r 0.163 0.183 0.178 0.277 0.368 0.442
NMGE 0.782 0.804 0.801 0.642 0.512 0.457
MGE 5.313 5.466 5.444 4.367 3.483 3.105
COE −0.614 −0.660 −0.653 −0.326 −0.058 0.057
RMSE 7.467 7.841 7.834 6.542 5.373 5.032
NMB −0.293 −0.302 −0.293 −0.309 −0.293 −0.294
MB −1.992 −2.050 −1.989 −2.098 −1.991 −1.995
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