5,655 research outputs found
Magneto-Optical Trap for Thulium Atoms
Thulium atoms are trapped in a magneto-optical trap using a strong transition
at 410 nm with a small branching ratio. We trap up to atoms at
a temperature of 0.8(2) mK after deceleration in a 40 cm long Zeeman slower.
Optical leaks from the cooling cycle influence the lifetime of atoms in the MOT
which varies between 0.3 -1.5 s in our experiments. The lower limit for the
leaking rate from the upper cooling level is measured to be 22(6) s. The
repumping laser transferring the atomic population out of the F=3 hyperfine
ground-state sublevel gives a 30% increase for the lifetime and the number of
atoms in the trap.Comment: 4 pages, 6 figure
Coherent magnetization precession in ferromagnetic (Ga,Mn)As induced by picosecond acoustic pulses
We show that the magnetization of a thin ferromagnetic (Ga,Mn)As layer can be
modulated by picosecond acoustic pulses. In this approach a picosecond strain
pulse injected into the structure induces a tilt of the magnetization vector M,
followed by the precession of M around its equilibrium orientation. This effect
can be understood in terms of changes in magneto-crystalline anisotropy induced
by the pulse. A model where only one anisotropy constant is affected by the
strain pulse provides a good description of the observed time-dependent
response.Comment: 13 pages, 3 figure
Plasmonic crystals for ultrafast nanophotonics: Optical switching of surface plasmon polaritons
We demonstrate that the dispersion of surface plasmon polaritons in a
periodically perforated gold film can be efficiently manipulated by femtosecond
laser pulses with the wavelengths far from the intrinsic resonances of gold.
Using a time- and frequency- resolved pump-probe technique we observe shifting
of the plasmon polariton resonances with response times from 200 to 800 fs
depending on the probe photon energy, through which we obtain comprehensive
insight into the electron dynamics in gold. We show that Wood anomalies in the
optical spectra provide pronounced resonances in differential transmission and
reflection with magnitudes up to 3% for moderate pump fluences of 0.5 mJ/cm^2.Comment: 5 pages, 4 figure
Observation of non-local dielectric relaxation in glycerol
Since its introduction, liquid viscosity and relaxation time have been
considered to be an intrinsic property of the system that is essentially local
in nature and therefore independent of system size. We perform dielectric
relaxation experiments in glycerol, and find that this is the case at high
temperature only. At low temperature, increases with system size and
becomes non-local. We discuss the origin of this effect in a picture based on
liquid elasticity length, the length over which local relaxation events in a
liquid interact via induced elastic waves, and find good agreement between
experiment and theory
Survey of charge symmetry breaking operators for dd -> alpha pi0
The charge-symmetry-breaking amplitudes for the recently observed d d ->
alpha pi0 reaction are investigated. Chiral perturbation theory is used to
classify and identify the leading-order terms. Specific forms of the related
one- and two-body tree level diagrams are derived. As a first step toward a
full calculation, a few tree-level two-body diagrams are evaluated at each
considered order, using a simplified set of d and alpha wave functions and a
plane-wave approximation for the initial dd state. The leading-order
pion-exchange term is shown to be suppressed in this model because of poor
overlap of the initial and final states. The higher-order one-body and
short-range (heavy-meson-exchange) amplitudes provide better matching between
the initial and final states and therefore contribute significantly and
coherently to the cross section. The consequences this might have for a full
calculation, with realistic wave functions and a more complete set of
amplitudes, are discussed.Comment: REVTeX 4, 35 pages, 8 eps figures, submitted to PR
- …