40 research outputs found

    Predictive factors of coronavirus disease (COVID-19) vaccination series completion: a one-year longitudinal web-based observational study in Japan

    Get PDF
    IntroductionAddresing vaccine hesitancy is considered an important goal in management of the COVID-19 pandemic. We sought to understand what factors influenced people, especially those initially hesitant, to receive two or more vaccine doses within a year of the vaccine’s release.MethodsWe conducted longitudinal Web-based observational studies of 3,870 individuals. The surveys were conducted at four different time points: January 2021, June 2021, September 2021, and December 2021. In the baseline survey (January 2021), we assessed vaccination intention (i.e., “strongly agree” or “agree” [acceptance], “neutral” [not sure], and “disagree” or “strongly disagree” [hesitance]), and assumptions about coronavirus disease (COVID-19), COVID-19 vaccine, COVID-19-related health preventive behavior, and COVID-19 vaccine reliability. In subsequent surveys (December 2021), we assessed vaccination completion (i.e., ≥2 vaccinations). To investigate the relationship between predictors of COVID-19 vaccination completion, a multivariable logistic regression model was applied. Adjusted odds ratios (AORs) and 95% confidence intervals (CIs) were calculated while adjusting for gender, age, marital status, presence of children, household income category, and presence of diseases under treatment. In a stratified analysis, predictors were determined based on vaccination intention.ResultsApproximately 96, 87, and 72% of those who demonstrated acceptance, were not sure, or hesitated had been vaccinated after 1 year, respectively. Overall, significant factors associated with COVID-19 vaccine compliance included the influence of others close to the index participant (social norms) (AOR, 1.80; 95% CI, 1.56–2.08; p < 0.001), vaccine confidence (AOR, 1.39; 95% CI, 1.18–1.64; p < 0.001) and structural constraints (no time, inconvenient location of medical institutions, and other related factors) (AOR, 0.80; 95% CI, 0.70–0.91; p = 0.001). In the group of individuals classified as hesitant, significant factors associated with COVID-19 vaccine compliance included social norms (AOR, 2.43; 95% CI, 1.83–3.22; p < 0.001), confidence (AOR, 1.44; 95% CI, 1.10–1.88; p = 0.008), and knowledge (AOR, 0.69; 95% CI, 0.53–0.88; p = 0.003).DiscussionWe found that dissemination of accurate information about vaccines and a reduction in structural barriers to the extent possible enhanced vaccination rates. Once the need for vaccination becomes widespread, it becomes a social norm, and further improvements in these rates can then be anticipated. Our findings may help enhance vaccine uptake in the future

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    Astrocyte-targeting therapy rescues cognitive impairment caused by neuroinflammation via the Nrf2 pathway

    No full text
    神経炎症時の活性化グリア細胞の産生機構の解明 --神経変性疾患の創薬標的の可能性--. 京都大学プレスリリース. 2023-08-08.Neuroinflammation is a common feature of neurodegenerative disorders such as Alzheimer’s disease (AD). Neuroinflammation is induced by dysregulated glial activation, and astrocytes, the most abundant glial cells, become reactive upon neuroinflammatory cytokines released from microglia and actively contribute to neuronal loss. Therefore, blocking reactive astrocyte functions is a viable strategy to manage neurodegenerative disorders. However, factors or therapeutics directly regulating astrocyte subtypes remain unexplored. Here, we identified transcription factor NF-E2-related factor 2 (Nrf2) as a therapeutic target in neurotoxic reactive astrocytes upon neuroinflammation. We found that the absence of Nrf2 promoted the activation of reactive astrocytes in the brain tissue samples obtained from AD model 5xFAD mice, whereas enhanced Nrf2 expression blocked the induction of reactive astrocyte gene expression by counteracting NF-κB subunit p65 recruitment. Neuroinflammatory astrocytes robustly up-regulated genes associated with type I interferon and the antigen-presenting pathway, which were suppressed by Nrf2 pathway activation. Moreover, impaired cognitive behaviors observed in AD mice were rescued upon ALGERNON2 treatment, which potentiated the Nrf2 pathway and reduced the induction of neurotoxic reactive astrocytes. Thus, we highlight the potential of astrocyte-targeting therapy by promoting the Nrf2 pathway signaling for neuroinflammation-triggered neurodegeneration

    The Rho-linked mental retardation protein oligophrenin-1 controls synapse maturation and plasticity by stabilizing AMPA receptors

    Get PDF
    Oligophrenin-1 (OPHN1) encodes a Rho-GTPase-activating protein (Rho-GAP) whose loss of function has been associated with X-linked mental retardation (MR). The pathophysiological role of OPHN1, however, remains poorly understood. Here we show that OPHN1 through its Rho-GAP activity plays a critical role in the activity-dependent maturation and plasticity of excitatory synapses by controlling their structural and functional stability. Synaptic activity through NMDA receptor activation drives OPHN1 into dendritic spines, where it forms a complex with AMPA receptors, and selectively enhances AMPA-receptor-mediated synaptic transmission and spine size by stabilizing synaptic AMPA receptors. Consequently, decreased or defective OPHN1 signaling prevents glutamatergic synapse maturation and causes loss of synaptic structure, function, and plasticity. These results imply that normal activity-driven glutamatergic synapse development is impaired by perturbation of OPHN1 function. Thus, our findings link genetic deficits in OPHN1 to glutamatergic dysfunction and suggest that defects in early circuitry development are an important contributory factor to this form of MR

    Table_1_Predictive factors of coronavirus disease (COVID-19) vaccination series completion: a one-year longitudinal web-based observational study in Japan.DOCX

    No full text
    IntroductionAddresing vaccine hesitancy is considered an important goal in management of the COVID-19 pandemic. We sought to understand what factors influenced people, especially those initially hesitant, to receive two or more vaccine doses within a year of the vaccine’s release.MethodsWe conducted longitudinal Web-based observational studies of 3,870 individuals. The surveys were conducted at four different time points: January 2021, June 2021, September 2021, and December 2021. In the baseline survey (January 2021), we assessed vaccination intention (i.e., “strongly agree” or “agree” [acceptance], “neutral” [not sure], and “disagree” or “strongly disagree” [hesitance]), and assumptions about coronavirus disease (COVID-19), COVID-19 vaccine, COVID-19-related health preventive behavior, and COVID-19 vaccine reliability. In subsequent surveys (December 2021), we assessed vaccination completion (i.e., ≥2 vaccinations). To investigate the relationship between predictors of COVID-19 vaccination completion, a multivariable logistic regression model was applied. Adjusted odds ratios (AORs) and 95% confidence intervals (CIs) were calculated while adjusting for gender, age, marital status, presence of children, household income category, and presence of diseases under treatment. In a stratified analysis, predictors were determined based on vaccination intention.ResultsApproximately 96, 87, and 72% of those who demonstrated acceptance, were not sure, or hesitated had been vaccinated after 1 year, respectively. Overall, significant factors associated with COVID-19 vaccine compliance included the influence of others close to the index participant (social norms) (AOR, 1.80; 95% CI, 1.56–2.08; p DiscussionWe found that dissemination of accurate information about vaccines and a reduction in structural barriers to the extent possible enhanced vaccination rates. Once the need for vaccination becomes widespread, it becomes a social norm, and further improvements in these rates can then be anticipated. Our findings may help enhance vaccine uptake in the future.</p

    Nonhomologous End-Joining Repair Plays a More Important Role than Homologous Recombination Repair in Defining Radiosensitivity after Exposure to High-LET Radiation

    No full text
    DNA double-strand breaks (DSBs) induced by ionizing radiation pose a major threat to cell survival. The cell can respond to the presence of DSBs through two major repair pathways: homologous recombination (HR) and non homologous end joining (NHEJ).Higher levels of cell death are induced by high-linear energy transfer (LET) radiation when compared to low-LET radiation, even at the same physical doses, due to less effective and efficient DNA repair. To clarify whether high-LET radiation inhibits all repair pathways or specifically one repair pathway, studies were designed to examine the effects of radiation with different LET values on DNA DSB repair and radiosensitivity. Embryonic fibroblasts bearing repair gene (NHEJ-related Lig4 and/or HR-related Rad54) knockouts (KO) were used and their responses were compared to wild-type cells. The cells were exposed to X rays, spread-out Bragg peak (SOBP) carbon ion beams as well as with carbon, iron, neon and argon ions. Cell survival was measured with colony-forming assays. The sensitization enhancement ratio (SER) values were calculated using the 10% survival dose of wild-type cells and repair-deficient cells. Cellular radiosensitivity was listed in descending order: double-KO cells . Lig4-KO cells . Rad54-KO cells . wild-type cells. Although Rad54-KO cells had an almost constant SER value, Lig4-KO cells showed a high-SER value when compared to Rad54-KO cells, even with increasing LET values. These results suggest that with carbon-ion therapy, targeting NHEJ repair yields higher radio sensitivity than targeting homologous recombination repair
    corecore