37 research outputs found

    Inhibitory Effects of Ecklonia cava Extract on High Glucose-Induced Hepatic Stellate Cell Activation

    Get PDF
    Nonalcoholic steatohepatitis (NASH) is a disease closely associated with obesity and diabetes. A prevalence of type 2 diabetes and a high body mass index in cryptogenic cirrhosis may imply that obesity leads to cirrhosis. Here, we examined the effects of an extract of Ecklonia cava, a brown algae, on the activation of high glucose-induced hepatic stellate cells (HSCs), key players in hepatic fibrosis. Isolated HSCs were incubated with or without a high glucose concentration. Ecklonia cava extract (ECE) was added to the culture simultaneously with the high glucose. Treatment with high glucose stimulated expression of type I collagen and α-smooth muscle actin, which are markers of activation in HSCs, in a dose-dependent manner. The activation of high glucose-treated HSCs was suppressed by the ECE. An increase in the formation of intracellular reactive oxygen species (ROS) and a decrease in intracellular glutathione levels were observed soon after treatment with high glucose, and these changes were suppressed by the simultaneous addition of ECE. High glucose levels stimulated the secretion of bioactive transforming growth factor-β (TGF-β) from the cells, and the stimulation was also suppressed by treating the HSCs with ECE. These results suggest that the suppression of high glucose-induced HSC activation by ECE is mediated through the inhibition of ROS and/or GSH and the downregulation of TGF-β secretion. ECE is useful for preventing the development of diabetic liver fibrosis

    超高強度間欠性運動パフォーマンスに及ぼす異なる種類の糖質摂取の影響

    Get PDF
    Purpose The purpose of this study was to elucidate the effects of different types of carbohydrate (glucose, fructose, trehalose) fluids on high-intensity intermittent exercise performance after intake. Methods The participants were seven healthy male students. Using a bicycle ergometer, they first exercised at a constant load for 60 min (intensity 80% VT). Thereafter, they performed the first set( Wingate test×3 bouts) and ingested one type of fluid after completion. Next, they exercised at the same constant load for 30 min, and soon after completion performed the second set. Finally, they performed a constant-load exercise for 30 min, followed by the third set. Blood glucose and lactic acid concentrations were measured over time in blood samples obtained from a finger. Results Blood glucose concentration rose significantly at 15 min after intake of a carbohydrate fluid. After 30 min, blood glucose concentration with glucose intake was significantly higher than with other fluids intake( P<0.01). No significant difference in performance was seen with carbohydrate fluid intake as compared with water intake. The decrease in amount of work in the third set was significantly smaller with trehalose intake than with water( P<0.05). Discussion Blood glucose concentration before the second set of high-intensity intermittent exercise rose to 120 mg/dl with glucose intake, though there was no effect on performance. This is thought to be because catecholamine was secreted as a result of the first set of high-intensity intermittent exercise and free fatty acid concentrations in the blood increased as a result. Furthermore, fat oxidation was accelerated from the subsequent aerobic exercise, and the glycolyt ic system was not readily used. Free fatty acids may thus have inhibitory effects on glucose metabolism that limit performance. The characteristic of moderate absorption of trehalose may have preserved energy until the latter part and mitigated a decrease in performance in the third set

    Synergistic Anticancer Activities of Natural Substances in Human Hepatocellular Carcinoma

    No full text
    Hepatocellular carcinoma (HCC) is highly resistant to currently available chemotherapeutic agents. The clinical outcome of HCC treatment remains unsatisfactory. Therefore, new effective and well-tolerated therapy strategies are needed. Natural products are excellent sources for the development of new medications for disease treatment. Recently, we and other researchers have suggested that the combined effect of natural products may improve the effect of chemotherapy treatments against the proliferation of cancer cells. In addition, many combination treatments with natural products augmented intracellular reactive oxygen species (ROS). In this review we will demonstrate the synergistic anticancer effects of a combination of natural products with chemotherapeutic agents or natural products against human HCC and provide new insight into the development of novel combination therapies against HCC

    Ecklonia cava Polyphenol Has a Protective Effect against Ethanol-Induced Liver Injury in a Cyclic AMP-Dependent Manner

    No full text
    Previously, we showed that Ecklonia cava polyphenol (ECP) treatment suppressed ethanol-induced increases in hepatocyte death by scavenging intracellular reactive oxygen species (ROS) and maintaining intracellular glutathione levels. Here, we examined the effects of ECP on the activities of alcohol-metabolizing enzymes and their regulating mechanisms in ethanol-treated hepatocytes. Isolated hepatocytes were incubated with or without 100 mM ethanol. ECP was dissolved in dimethylsulfoxide. ECP was added to cultured cells that had been incubated with or without ethanol. The cells were incubated for 0–24 h. In cultured hepatocytes, the ECP treatment with ethanol inhibited cytochrome P450 2E1 (CYP2E1) expression and activity, which is related to the production of ROS when large quantities of ethanol are oxidized. On the other hand, ECP treatment with ethanol increased the activity of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase. These changes in activities of CYP2E1 and ADH were suppressed by treatment with H89, an inhibitor of protein kinase A. ECP treatment with ethanol enhanced cyclic AMP concentrations compared with those of control cells. ECP may be a candidate for preventing ethanol-induced liver injury via regulating alcohol metabolic enzymes in a cyclic AMP-dependent manner

    Mallotus furetianus extract protects against ethanol-induced liver injury via the activation of the cAMP-PKA pathway

    No full text
    The protective effects of Mallotus furetianus extract (MF) on liver fibrosis induced with ethanol were examined using in vivo and in vitro model. MF treatment suppressed plasma alanine aminotransferase and aspartate aminotransferase activities in ethanol plus carbon tetrachloride (CCl4)-induced cirrhosis rat model. MF also suppressed the increase in type l collagen and α-smooth muscle actin expression in the livers of ethanol plus CCl4-induced rat by the maintenance of intracellular glutathione levels. Furthermore, we evaluated the effect of MF on the alcohol-induced activation of hepatic stellate cells (HSCs), which are responsible for the increased production and deposition of the extracellular matrix in liver injury. Here, we observed the enhancement of the intracellular reactive oxygen species (ROS) levels and the increase in type I collagen and a-SMA expression in HSCs activated with ethanol. However, the enhanced ROS levels were suppressed with the treatments of MF or diphenyleneiodonium (DPI). Furthermore, the treatment of MF or DPI suppressed the increase in type I collagen and a-SMA expression activated with ethanol. We also observed that the treatment of MF or LY194002 suppressed the increase in type I collagen expression in HSCs activated with ethanol, suggesting that ethanol induced type I collagen expression via the PI3K-Akt signaling pathway. On the other hand, the suppression of the synthesis of type I collagen in ethanol and MF-treated HSCs was inhibited by H-89. From these results, MF may suppress the increase in the activity of NADPH oxidase in HSCs activated with ethanol through the cAMP-PKA pathway

    Glyoxylic Acid, an α-Keto Acid Metabolite Derived from Glycine, Promotes Myogenesis in C2C12 Cells

    No full text
    α-Keto acids may help prevent malnutrition in patients with chronic kidney disease (CKD), who consume protein-restricted diets, because they serve as amino acid sources without producing nitrogenous waste compounds. However, the physiological roles of α-keto acids, especially those derived from non-essential amino acids, remain unclear. In this study, we examined the effect of glyoxylic acid (GA), an α-keto acid metabolite derived from glycine, on myogenesis in C2C12 cells. Differentiation and mitochondrial biogenesis were used as myogenesis indicators. Treatment with GA for 6 d resulted in an increase in the expression of differentiation markers (myosin heavy chain II and myogenic regulatory factors), mitochondrial biogenesis, and intracellular amounts of amino acids (glycine, serine, and alanine) and their metabolites (citric acid and succinic acid). In addition, GA treatment suppressed the 2.5-µM dexamethasone (Dex)-induced increase in mRNA levels of ubiquitin ligases (Trim63 and Fbxo32), muscle atrophy markers. These results indicate that GA promotes myogenesis, suppresses Dex-induced muscle atrophy, and is metabolized to amino acids in muscle cells. Although further in vivo experiments are needed, GA may be a beneficial nutrient for ameliorating the loss of muscle mass, strength, and function in patients with CKD on a strict dietary protein restriction

    Kaempferia galanga L. extract and its main component, ethyl p-methoxycinnamate, inhibit the proliferation of Ehrlich ascites tumor cells by suppressing TFAM expression

    No full text
    Kaempferia galanga L. shows anti-cancer effects; however, the underling mechanism remains unclear. In this study, we explored the underlying mechanism of the anti-cancer effects of Kaempferia galanga L. Kaempferia galanga L. rhizome extracts (KGEs) suppressed Ehrlich ascites tumor cell (EATC) proliferation by inhibiting S-phase progression. The main component of KGE is ethyl p-methoxycinnamate (EMC), which exhibits the same anti-proliferative effect as KGE. Furthermore, EMC induced the downregulation of cyclin D1 and upregulation of p21. EMC also decreased the expression of mitochondrial transcription factor A (TFAM) but did not significantly change mitochondrial DNA copy number and membrane potential. Phosphorylation at Ser62 of c-Myc, a transcription factor of TFAM, was decreased by EMC treatment, which might be due to the suppression of H-ras expression. These results indicate that EMC is the active compound responsible for the anti-cancer effect of KGE and suppresses EATC proliferation by regulating the protein expression of cyclin D1 and p21; TFAM may also regulate the expression of these genes. In addition, we investigated the anticancer effects of KGE and EMC in vivo using EATC bearing mice. The volume of ascites fluid was significantly increased by intraperitoneal administration of EATC. However, the increase in the volume of ascites fluid was suppressed by oral administration of EMC and KGE. This study provides novel insights into the association between the anti-cancer effects of natural compounds and TFAM, indicating that TFAM might be a potential therapeutic target
    corecore