17 research outputs found

    Purely excitonic lasing in ZnO microcrystals: Temperature-induced transition between exciton-exciton and exciton-electron scattering

    Get PDF
    Since the seminal observation of room-temperature laser emission from ZnO thin films and nanowires, numerous attempts have been carried out for detailed understanding of the lasing mechanism in ZnO. In spite of the extensive efforts performed over the last decades, the origin of optical gain at room temperature is still a matter of considerable discussion. In this work, we show that a ZnO film consisting of well-packed micrometer-sized ZnO crystals exhibits purely excitonic lasing at room temperature without showing any symptoms of electron-hole plasma emission, even under optical excitation more than 25 times above the excitonic lasing threshold. The lasing mechanism is shifted from the exciton-exciton scattering to the exciton-electron scattering with increasing temperature from 3 to 150 K. The exciton-electron scattering process continues to exist with further increasing temperature from 150 to 300 K. Thus, we present distinct experimental evidence that the room-temperature excitonic lasing is achieved not by exciton-exciton scattering, as has been generally believed, but by exciton-electron scattering. We also argue that the long carrier diffusion length and the low optical loss nature of the micrometer-sized ZnO crystals, as compared to those of ZnO nanostructures, plays a key role in showing room-temperature excitonic lasing

    光スイッチング機能性物質における可逆的光誘起相転移の超高速ダイナミクス

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学准教授 酒井 広文, 東京大学教授 島野 亮, 東京大学教授 小森 文夫, 東京大学准教授 松田 巌, 東京大学准教授 溝川 貴司University of Tokyo(東京大学

    Dual-comb spectroscopy for rapid characterization of complex optical properties of solids

    Get PDF
    We demonstrate rapid characterization of complex optical properties of solids via dual-comb spectroscopy (DCS) in the near-infrared region. The fine spectral structures in the complex refractive index of an Er:YAG are successfully deduced using the developed system and Fourier analysis. Moreover, simultaneous determination of the refractive index and the thickness is demonstrated for a silicon semiconductor wafer through the use of multireflected echo signals. The results indicate the potential of DCS as a powerful measurement tool for the rapid and full characterization of solid materials

    Involvement of resistin-like molecule β in the development of methionine-choline deficient diet-induced non-alcoholic steatohepatitis in mice

    Get PDF
    Resistin-like molecule β (RELMβ) reportedly has multiple functions including local immune responses in the gut. In this study, we investigated the possible contribution of RELMβ to non-alcoholic steatohepatitis (NASH) development. First, RELMβ knock-out (KO) mice were shown to be resistant to methionine-choline deficient (MCD) diet-induced NASH development. Since it was newly revealed that Kupffer cells in the liver express RELMβ and that RELMβ expression levels in the colon and the numbers of RELMβ-positive Kupffer cells were both increased in this model, we carried out further experiments using radiation chimeras between wild-type and RELMβ-KO mice to distinguish between the contributions of RELMβ in these two organs. These experiments revealed the requirement of RELMβ in both organs for full manifestation of NASH, while deletion of each one alone attenuated the development of NASH with reduced serum lipopolysaccharide (LPS) levels. The higher proportion of lactic acid bacteria in the gut microbiota of RELMβ-KO than in that of wild-type mice may be one of the mechanisms underlying the lower serum LPS level the former. These data suggest the contribution of increases in RELMβ in the gut and Kupffer cells to NASH development, raising the possibility of RELMβ being a novel therapeutic target for NASH

    Scan-less confocal phase imaging based on dual-comb microscopy

    Get PDF
    Confocal laser microscopy (CLM) is a powerful tool in life science research and industrial inspection because it offers two-dimensional optical sectioning or three-dimensional imaging capability with micrometer depth selectivity. Furthermore, scan-less imaging modality enables rapid image acquisition and high robustness against surrounding external disturbances in CLM. However, the objects to be measured must be reflective, absorptive, scattering, or fluorescent because the image contrast is given by the optical intensity. If a new image contrast can be provided by the optical phase, scan-less CLMcan be further applied for transparent non-fluorescent objects or reflective objects with nanometer unevenness by providing information on refractive index, optical thickness, or geometrical shape. Here, we report scan-less confocal dual-comb microscopy offering a phase image in addition to an amplitude image with depth selectivity by using an optical frequency comb as an optical carrier of amplitude and phase with discrete ultra-multichannels. Our technique encodes confocal amplitude and phase images of a sample onto a series of discrete modes in the optical frequency comb with well-defined amplitude and phase to establish a one-to-one correspondence between image pixels and comb modes. The technique then decodes these images from comb modes with amplitude and phase. We demonstrate confocal phase imaging with milliradian phase resolution under micrometer depth selectivity on the millisecond timescale. As a proof of concept, we demonstrate the quantitative phase imaging of standing culture fixed cells and the surface topography of nanometer-scale step structures. Our technique for confocal phase imaging will find applications in three-dimensional visualization of stacked living cells in culture and nanometer surface topography of semiconductor objects

    Prevention of hypoglycemia by intermittent-scanning continuous glucose monitoring device combined with structured education in patients with type 1 diabetes mellitus : A randomized, crossover trial

    Get PDF
    Aims: We conducted a randomized, crossover trial to compare intermittent-scanning continuous glucose monitoring (isCGM) device with structured education (Intervention) to self-monitoring of blood glucose (SMBG) (Control) in the reduction of time below range. Methods: This crossover trial involved 104 adults with type 1 diabetes mellitus (T1DM) using multiple daily injections. Participants were randomly allocated to either sequence Intervention/Control or sequence Control/Intervention. During the Intervention period which lasted 84 days, participants used the first-generation FreeStyle Libre (Abbott Diabetes Care, Alameda, CA, USA) and received structured education on how to prevent hypoglycemia based on the trend arrow and by frequent sensor scanning (≥10 times a day). Confirmatory SMBG was conducted before dosing insulin. The Control period lasted 84 days. The primary endpoint was the decrease in the time below range (TBR; <70 mg/dL). Results: The time below range was significantly reduced in the Intervention arm compared to the Control arm (2.42 ± 1.68 h/day [10.1 %±7.0 %] vs 3.10 ± 2.28 h/day [12.9 %±9.5 %], P = 0.012). The ratio of high-risk participants with low blood glucose index >5 was significantly reduced (8.6 % vs 23.7 %, P < 0.001). Conclusions: The use of isCGM combined with structured education significantly reduced the time below range in patients with T1DM

    Development of ultrafast time-resolved dual-comb spectroscopy

    Get PDF
    Ultrafast time-resolved dual-comb spectroscopy (TR-DCS) has been demonstrated, which enables direct observations of transient responses of complex optical spectra by combining dual-comb spectroscopy with the pump–probe method. TR-DCS achieves two-dimensional spectroscopy with a wide dynamic range for both the temporal and frequency axes. As a demonstration, we investigated the femtosecond relaxation dynamics of a photo-excited InGaAs saturable absorber in the near-infrared frequency region. The transient response of the interferogram was successfully obtained, and both the amplitude and phase spectra of the dynamic complex transmittance were independently deduced without using the Kramers-Kronig relations. A high phase resolution in the order of milliradian was achieved by suppressing the effect from the slow phase drift caused in the experimental system. Our proof-of-principle experiment promotes a pathway to coherent, highly accurate, and multi-dimensional pump–probe spectroscopy using the optical frequency comb technology
    corecore