4,272 research outputs found
Energy barrier in the two-Higgs model
The electroweak model is extended by a second Higgs doublet and a numerical
investigation of static, finite energy classical solutions is performed. The
results indicate that for a large domain of the parameters of the Higgs
potential, the energy barrier between topologically distinct vacua of the
Lagrangian is constituted by a bisphaleron.Comment: 19 pages, including 4 eps figures, LaTex format, new results include
On Axially Symmetric Solutions in the Electroweak Theory
We present the general ansatz, the energy density and the Chern-Simons charge
for static axially symmetric configurations in the bosonic sector of the
electroweak theory. Containing the sphaleron, the multisphalerons and the
sphaleron-antisphaleron pair at finite mixing angle, the ansatz further allows
the construction of the sphaleron and multisphaleron barriers and of the
bisphalerons at finite mixing angle. We conjecture that further solutions
exist.Comment: 17 pages, latex, THU-94/0
Quantum Fluctuations around the Electroweak Sphaleron
We present an analysis of the quantum fluctuations around the electroweak
sphaleron and calculate the associated determinant which gives the 1--loop
correction to the sphaleron transition rate. The calculation differs in various
technical aspects from a previous analysis by Carson et al. so that it can be
considered as independent. The numerical results differ also -- by several
orders of magnitude -- from those of this previous analysis; we find that the
sphaleron transition rate is much less suppressed than found previously.Comment: DO-TH-93/19 39 pages, 5 figures (available on request as Postscript
files or via Fax or mail), LaTeX, no macros neede
Exact Baryon, Strangeness and Charge Conservation in Hadronic Gas Models
Relativistic heavy ion collisions are studied assuming that particles can be
described by a hadron gas in thermal and chemical equilibrium. The exact
conservation of baryon number, strangeness and charge are explicitly taken into
account. For heavy ions the effect arising from the neutron surplus becomes
important and leads to a substantial increase in e.g. the ratio.
A method is developed which is very well suited for the study of small systems.Comment: 5 pages, 5 Postscript figure
Hanbury-Brown--Twiss Analysis in a Solvable Model
The analysis of meson correlations by Hanbury-Brown--Twiss interferometry is
tested with a simple model of meson production by resonance decay. We derive
conditions which should be satisfied in order to relate the measured momentum
correlation to the classical source size. The Bose correlation effects are
apparent in both the ratio of meson pairs to singles and in the ratio of like
to unlike pairs. With our parameter values, we find that the single particle
distribution is too distorted by the correlation to allow a straightforward
analysis using pair correlation normalized by the singles rates. An analysis
comparing symmetrized to unsymmetrized pairs is more robust, but nonclassical
off-shell effects are important at realistic temperatures.Comment: 21 pages + 9 figures (tarred etc. using uufiles, submitted
separately), REVTeX 3.0, preprint number: DOE/ER/40561-112/INT93-00-3
Hypervalence and the delocalizing versus localizing propensities of H-3(-), Li-3(-), CH5- and SiH5-
Lithium and silicon have the capability to form hypervalent structures, such as L
Level Crossing Along Sphaleron Barriers
In the electroweak sector of the standard model topologically inequivalent
vacua are separated by finite energy barriers, whose height is given by the
sphale\-ron. For large values of the Higgs mass there exist several sphaleron
solutions and the barriers are no longer symmetric. We construct paths of
classical configurations from one vacuum to a neighbouring one and solve the
fermion equations in the background field configurations along such paths,
choosing the fermions of a doublet degenerate in mass. As in the case of light
Higgs masses we observe the level crossing phenomenon also for large Higgs
masses.Comment: 17 pages, latex, 10 figures in uuencoded postscript files. THU-94/0
Event Reconstruction in the PHENIX Central Arm Spectrometers
The central arm spectrometers for the PHENIX experiment at the Relativistic
Heavy Ion Collider have been designed for the optimization of particle
identification in relativistic heavy ion collisions. The spectrometers present
a challenging environment for event reconstruction due to a very high track
multiplicity in a complicated, focusing, magnetic field. In order to meet this
challenge, nine distinct detector types are integrated for charged particle
tracking, momentum reconstruction, and particle identification. The techniques
which have been developed for the task of event reconstruction are described.Comment: Accepted for publication in Nucl. Instrum. A. 34 pages, 23 figure
- …