14 research outputs found

    Streamlined Sampling and Cultivation of the Pelagic Cosmopolitan Larvacean, Oikopleura dioica

    Get PDF
    Oikopleura dioica is a planktonic chordate with exceptional filter-feeding ability, rapid generation time, conserved early development, and a compact genome. For these reasons, it is considered a useful model organism for marine ecological studies, evolutionary developmental biology, and genomics. As research often requires a steady supply of animal resources, it is useful to establish a reliable, low-maintenance culture system. Here we describe a step-by-step method for establishing an O. dioica culture. We describe how to select potential sampling sites, collection methods, target animal identification, and the set-up of the culturing system. We provide troubleshooting advice based on our own experiences. We also highlight critical factors that help sustain a robust culture system. Although the culture protocol provided here is optimized for O. dioica, we hope our sampling technique and culture setup will inspire new ideas for maintaining other fragile pelagic invertebrates

    Telomere-to-telomere assembly of the genome of an individual Oikopleura dioica from Okinawa using Nanopore-based sequencing

    Get PDF
    BACKGROUND: The larvacean Oikopleura dioica is an abundant tunicate plankton with the smallest (65-70 Mbp) non-parasitic, non-extremophile animal genome identified to date. Currently, there are two genomes available for the Bergen (OdB3) and Osaka (OSKA2016) O. dioica laboratory strains. Both assemblies have full genome coverage and high sequence accuracy. However, a chromosome-scale assembly has not yet been achieved. RESULTS: Here, we present a chromosome-scale genome assembly (OKI2018_I69) of the Okinawan O. dioica produced using long-read Nanopore and short-read Illumina sequencing data from a single male, combined with Hi-C chromosomal conformation capture data for scaffolding. The OKI2018_I69 assembly has a total length of 64.3 Mbp distributed among 19 scaffolds. 99% of the assembly is contained within five megabase-scale scaffolds. We found telomeres on both ends of the two largest scaffolds, which represent assemblies of two fully contiguous autosomal chromosomes. Each of the other three large scaffolds have telomeres at one end only and we propose that they correspond to sex chromosomes split into a pseudo-autosomal region and X-specific or Y-specific regions. Indeed, these five scaffolds mostly correspond to equivalent linkage groups in OdB3, suggesting overall agreement in chromosomal organization between the two populations. At a more detailed level, the OKI2018_I69 assembly possesses similar genomic features in gene content and repetitive elements reported for OdB3. The Hi-C map suggests few reciprocal interactions between chromosome arms. At the sequence level, multiple genomic features such as GC content and repetitive elements are distributed differently along the short and long arms of the same chromosome.CONCLUSIONS: We show that a hybrid approach of integrating multiple sequencing technologies with chromosome conformation information results in an accurate de novo chromosome-scale assembly of O. dioica\u27s highly polymorphic genome. This genome assembly opens up the possibility of cross-genome comparison between O. dioica populations, as well as of studies of chromosomal evolution in this lineage

    A genome database for a Japanese population of the larvacean Oikopleura dioica

    Get PDF
    The larvacean Oikopleura dioica is a planktonic chordate, and is tunicate that belongs to the closest relatives to vertebrates. Its simple and transparent body, invariant embryonic cell lineages, and short life cycle of five days make it a promising model organism for developmental biology research. The genome browser OikoBase was established in 2013 using Norwegian O. dioica. However, genome information for other populations is not available, even though many researchers have studied local populations. In the present study, we sequenced using Illumina and PacBio RSII technologies the genome of O. dioica from a southwestern Japanese population that was cultured in our laboratory for three years. The genome of Japanese O. dioica was assembled into 576 scaffold sequences with a total length and N50 length of 56.6 Mb and 1.5 Mb, respectively. A total of 18,743 gene models (transcript models) were predicted in the genome assembly, named as OSKA2016. In addition, 19,277 non-redundant transcripts were assembled using RNA-seq data. The OSKA2016 has global sequence similarity of only 86.5% when compared with the OikoBase, highlighting the sequence difference between the two far distant O. dioica populations on the globe. The genome assembly, transcript assembly, and transcript models were incorporated into ANISEED (https://www.aniseed.cnrs.fr/) for genome browsing and blast searches. Moreover, screening of the male-specific scaffolds revealed that over 2.6 Mb of sequence were included in the male-specific Yregion. The genome and transcriptome resources from two distinct populations will be useful datasets for developmental biology, evolutionary biology, and molecular ecology using this model organism

    H3S28P Antibody Staining of Okinawan Oikopleura dioica Suggests the Presence of Three Chromosomes

    Get PDF
    Oikopleura dioica is a ubiquitous marine zooplankton of biological interest owing to features that include dioecious reproduction, a short life cycle, conserved chordate body plan, and a compact genome. It is an important tunicate model for evolutionary and developmental research, as well as investigations into marine ecosystems. The genome of north Atlantic O. dioica comprises three chromosomes. However, comparisons with the genomes of O. dioica sampled from mainland and southern Japan revealed extensive sequence differences. Moreover, historical studies have reported widely varying chromosome counts. We recently initiated a project to study the genomes of O. dioica individuals collected from the coastline of the Ryukyu (Okinawa) Islands in southern Japan. Given the potentially large extent of genomic diversity, we employed karyological techniques to count individual animals’ chromosomes in situ using centromere-specific antibodies directed against H3S28P, a prophase-metaphase cell cycle-specific marker of histone H3. Epifluorescence and confocal images were obtained of embryos and oocytes stained with two commercial anti-H3S28P antibodies (Abcam ab10543 and Thermo Fisher 07-145). The data lead us to conclude that diploid cells from Okinawan O. dioica contain three pairs of chromosomes, in line with the north Atlantic populations. The finding facilitates the telomere-to-telomere assembly of Okinawan O. dioica genome sequences and gives insight into the genomic diversity of O. dioica from different geographical locations. The data deposited in the EBI BioImage Archive provide representative images of the antibodies’ staining properties for use in epifluorescent and confocal based fluorescent microscopy

    Observation of an Orientation Change in Highly Oriented Layer-by-Layer Films of a Ruthenium Complex upon Oxidation Reaction

    No full text
    Layer-by-layer films composed of redox-active ruthenium dimer and Zr­(IV) ions were fabricated on an indium tin oxide electrode. The fabricating behavior was monitored by cyclic voltammetry and UV–vis absorption spectral measurements. The orientation of the film was also monitored by grazing-incidence small-angle and wide-angle X-ray scattering (GISAXS) measurements, and it has been clarified that this film has a crystalline structure. The peaks obtained by GISAXS were changed upon oxidation reaction, which indicates that a change in the orientation of the ruthenium dimer occurred in the film

    The cosmopolitan appendicularian Oikopleura dioica reveals hidden genetic diversity around the globe

    No full text
    Appendicularian tunicates are some of the most abundant mesozooplankton organisms with key roles in marine trophic webs and global carbon flux. Like most appendicularians with cosmopolitan distributions, Oikopleura dioica Fol, 1872 is considered a single species worldwide based on morphological features that distinguish them from other appendicularians. Despite their abundance, however, there are still only ~ 70 described appendicularian species, compared to over 2800 ascidian tunicates. Here we perform a molecular phylogenetic, morphological, and reproductive assessment of O. dioica specimens collected from the Ryukyu Archipelago, mainland Japan, and Europe. The specimens are morphologically very similar, with only detailed examination of the oikoplastic epithelium and quantitative measurements revealing minor distinguishing characteristics. Phylogenetic analyses of the ribosomal gene loci and mitochondrial cytochrome oxidase I (COI) gene strongly indicate that they form three separate genetic clades despite their morphological similarities. Finally, in vitro crosses between the Ryukyu and mainland Japanese specimens show total prezygotic reproductive isolation. Our results reveal that the current taxonomic O. dioica classification likely hides multiple cryptic species, highlighting the genetic diversity and complexity of their population structures. Cryptic organisms are often hidden under a single species name because their morphological similarities make them difficult to distinguish and their correct identification is fundamental to understanding Earth’s biodiversity. O. dioica is an attractive model to understand how morphological conservation can be maintained despite pronounced genetic divergence
    corecore