40 research outputs found

    Helicobacter pylori Outer Membrane Protein 18 ( Hp1125 ) Induces Dendritic Cell Maturation and Function

    Full text link
    Background.  Dendritic cells (DCs) are potent antigen-presenting cells that initiate T-cell responses. A robust adaptive Th1 immune response is crucial to an adaptive (Th2) immune response necessary for vaccine-induced protective immunity against Helicobacter pylori. It has been shown that several outer membrane proteins (Omps) induce a robust antibody response. However, it is also known that the antibodies generated are not protective. Moreover there is great variation in the recognition of high molecular weight H. pylori proteins by sera from infected patients. In contrast to the high molecular weight proteins, serologic responses to small molecular weight proteins provide assessment of current infection with H. pylori and also of its eradication. Aim.  The goal of the study was to analyze the activation of the immune response by a specific low molecular weight Omp that is universally expressed by all H. pylori strains. Therefore, we studied interaction of H. pylori Omp18 with DCs. Methods.  Activation of murine bone marrow-derived DCs and production of cytokines by Omp18 was assessed by fluorescence-activated cell sorter (FACS) for costimulatory markers and ELISA, respectively. The ability of Omp18 stimulated DCs to induce lymphocyte proliferation was measured in a mixed leukocyte reaction. Results.  Omp18 induced higher expression of the B7 (CD80 and CD86) costimulatory molecule after 18 hours indicating processing and presentation of the antigen on the surface by bone marrow-derived DCs. The maturing DCs also secreted significant levels of IL-12, but was 4-fold less than that stimulated by whole bacteria. Omp18-primed DCs induced proliferation and release of IFNγ by syngeneic splenocytes. Conclusion.  We concluded that Omp18 is capable of activating DCs initiating a Th1 immune response.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73882/1/j.1523-5378.2005.00350.x.pd

    Cationic Amino Acid Transporter 2 Enhances Innate Immunity during Helicobacter pylori Infection

    Get PDF
    Once acquired, Helicobacter pylori infection is lifelong due to an inadequate innate and adaptive immune response. Our previous studies indicate that interactions among the various pathways of arginine metabolism in the host are critical determinants of outcomes following infection. Cationic amino acid transporter 2 (CAT2) is essential for transport of l-arginine (L-Arg) into monocytic immune cells during H. pylori infection. Once within the cell, this amino acid is utilized by opposing pathways that lead to elaboration of either bactericidal nitric oxide (NO) produced from inducible NO synthase (iNOS), or hydrogen peroxide, which causes macrophage apoptosis, via arginase and the polyamine pathway. Because of its central role in controlling L-Arg availability in macrophages, we investigated the importance of CAT2 in vivo during H. pylori infection. CAT2−/− mice infected for 4 months exhibited decreased gastritis and increased levels of colonization compared to wild type mice. We observed suppression of gastric macrophage levels, macrophage expression of iNOS, dendritic cell activation, and expression of granulocyte-colony stimulating factor in CAT2−/− mice suggesting that CAT2 is involved in enhancing the innate immune response. In addition, cytokine expression in CAT2−/− mice was altered from an antimicrobial Th1 response to a Th2 response, indicating that the transporter has downstream effects on adaptive immunity as well. These findings demonstrate that CAT2 is an important regulator of the immune response during H. pylori infection

    Multiple molecular mechanisms form a positive feedback loop driving amyloid β42 peptide-induced neurotoxicity via activation of the TRPM2 channel in hippocampal neurons

    Get PDF
    Emerging evidence supports an important role for the ROS-sensitive TRPM2 channel in mediating age-related cognitive impairment in Alzheimer’s disease (AD), particularly neurotoxicity resulting from generation of excessive neurotoxic Aβ peptides. Here we examined the elusive mechanisms by which Aβ₄₂ activates the TRPM2 channel to induce neurotoxicity in mouse hippocampal neurons. Aβ₄₂-induced neurotoxicity was ablated by genetic knockout (TRPM2-KO) and attenuated by inhibition of the TRPM2 channel activity or activation through PARP-1. Aβ₄₂-induced neurotoxicity was also inhibited by treatment with TPEN used as a Zn²⁺-specific chelator. Cell imaging revealed that Aβ₄₂-induced lysosomal dysfunction, cytosolic Zn²⁺ increase, mitochondrial Zn²⁺ accumulation, loss of mitochondrial function, and mitochondrial generation of ROS. These effects were suppressed by TRPM2-KO, inhibition of TRPM2 or PARP-1, or treatment with TPEN. Bafilomycin-induced lysosomal dysfunction also resulted in TRPM2-dependent cytosolic Zn²⁺ increase, mitochondrial Zn²⁺ accumulation, and mitochondrial generation of ROS, supporting that lysosomal dysfunction and accompanying Zn²⁺ release trigger mitochondrial Zn²⁺ accumulation and generation of ROS. Aβ₄₂-induced effects on lysosomal and mitochondrial functions besides neurotoxicity were also suppressed by inhibition of PKC and NOX. Furthermore, Aβ₄₂-induced neurotoxicity was prevented by inhibition of MEK/ERK. Therefore, our study reveals multiple molecular mechanisms, including PKC/NOX-mediated generation of ROS, activation of MEK/ERK and PARP-1, lysosomal dysfunction and Zn²⁺ release, mitochondrial Zn²⁺ accumulation, loss of mitochondrial function, and mitochondrial generation of ROS, are critically engaged in forming a positive feedback loop that drives Aβ₄₂-induced activation of the TRPM2 channel and neurotoxicity in hippocampal neurons. These findings shed novel and mechanistic insights into AD pathogenesis

    Effects of Helicobacter suis γ-glutamyl transpeptidase on lymphocytes: modulation by glutamine and glutathione supplementation and outer membrane vesicles as a putative delivery route of the enzyme

    Get PDF
    Helicobacter (H.) suis colonizes the stomach of the majority of pigs as well as a minority of humans worldwide. Infection causes chronic inflammation in the stomach of the host, however without an effective clearance of the bacteria. Currently, no information is available about possible mechanisms H. suis utilizes to interfere with the host immune response. This study describes the effect on various lymphocytes of the γ-glutamyl transpeptidase (GGT) from H. suis. Compared to whole cell lysate from wild-type H. suis, lysate from a H. suis ggt mutant strain showed a decrease of the capacity to inhibit Jurkat T cell proliferation. Incubation of Jurkat T cells with recombinantly expressed H. suis GGT resulted in an impaired proliferation, and cell death was shown to be involved. A similar but more pronounced inhibitory effect was also seen on primary murine CD4+ T cells, CD8+ T cells, and CD19+ B cells. Supplementation with known GGT substrates was able to modulate the observed effects. Glutamine restored normal proliferation of the cells, whereas supplementation with reduced glutathione strengthened the H. suis GGT-mediated inhibition of proliferation. H. suis GGT treatment abolished secretion of IL-4 and IL-17 by CD4+ T cells, without affecting secretion of IFN-γ. Finally, H. suis outer membrane vesicles (OMV) were identified as a possible delivery route of H. suis GGT to lymphocytes residing in the deeper mucosal layers. Thus far, this study is the first to report that the effects on lymphocytes of this enzyme, not only important for H. suis metabolism but also for that of other Helicobacter species, depend on the degradation of two specific substrates: glutamine and reduced glutatione. This will provide new insights into the pathogenic mechanisms of H. suis infection in particular and infection with gastric helicobacters in general

    Inflammation, immunity, vaccines for Helicobacter infection

    No full text
    The reason why some individuals remain Helicobacter pylori infected for life but without any symptoms while others develop severe diseases is only partially clarified. Presumably, it depends on multifactorial interactions among host immunologic and physiologic factors, bacterial virulence determinants, and environmental influences modulating the host response. Much effort has been made to identify host genetic factors that may explain an individual susceptibility of the host to H. pylori infection. The identification of H. pylori determinants and the elucidation of their role in modifying the host immune responses were further delineated. The ability of H. pylori to overcome the defense mechanisms on mucosal surfaces as well as to modulate the immune response by interfering with host recognition and transduction systems has been shown. Also new bacterial anti-inflammatory defense systems have been described. Findings in experimental animal models and humans with natural H. pylori infection suggested a double role of regulatory T cells in the course of H. pylori infection: protecting the infected host against excessive gastric inflammation and, in contrast, promoting bacterial colonization

    Mucosal immunization with a urease B DNA vaccine induces innate and cellular immune responses against Helicobacter pylori.

    No full text
    BACKGROUND: Helicobacter pylori is recognized as a major risk factor for recurrent gastroduodenal inflammatory diseases and gastric adenocarcinoma. The high prevalence of H. pylori infection worldwide, the risks of side-effects from antibiotic therapy, and increasing resistance to antibiotics are the main primers for the development of improved H. pylori vaccines. The antigenic potential of its urease enzyme, a critical virulence factor required for colonization of the gastric mucosa, has been demonstrated in animal and human studies. An important but controversial issue in H. pylori vaccine studies is the type of immune response required to control infection. A new approach in H. pylori vaccinology is the administration of DNA vaccines, which has included heat-shock protein and catalase DNA vaccines. MATERIALS AND METHODS: The H. pylori urease subunit B construct or vector alone was administered to mice via the intranasal route. Spleens and stomachs were examined on day 0 and weeks 3, 6, and 12 after immunization. Proliferation of spleen cells was assessed using the carboxyfluorescein diacetate succinimidyl ester-based flow cytometry assay and cytokine secretion from cultured spleen cells was detected by ELISA, after stimulation with the urease subunit B recombinant antigen. Total RNA was isolated from stomach and spleen tissue and the expression of beta-defensin and cytokine genes was monitored by reverse transcription followed by polymerase chain reaction (RT-PCR). Immunized mice were challenged with H. pylori and bacterial DNA quantified by TaqMan PCR. RESULTS: The urease B subunit DNA vaccine increased INF-gamma secretion and splenocyte proliferation without inducing adverse effects in the spleen. Increase in gastric beta-defensin 1 and marked induction in local IL-10 : IFN-gamma ratio up to 12 weeks post-immunization suggest a potential role for local innate immune responses in protection at the site of infection. Although significant bacterial reduction in the stomachs of urease B subunit DNA-immunized mice was observed, intermediate reduction was also noted in the vector group. Increased defensin expression and adjuvant effects of the cytosine preceding guanosine motifs may contribute to this phenomenon. Our data confirm that cytosine preceding guanosine motifs, even without coadministration with antigen, can reduce extracellular bacterial load. CONCLUSIONS: In this study, a DNA construct encoding the urease B subunit was assessed for its immune profile and its ability to reduce bacterial colonization in the murine stomach. Our studies suggest that local innate immune responses may play a greater role than previously supposed in limiting H. pylori colonization in the gastric mucosa
    corecore