4,431 research outputs found
Loyalty discounts
This paper considers the use of loyalty inducing discounts in vertical supply chains. An upstream manufacturer and a competitive fringe sell differentiated products to a retailer who has private information about the level of stochastic demand. We provide a comparison of market outcomes when the manufacturer uses two-part tariffs (2PT), all-unit quantity discounts (AU), and market share discounts (MS). We show that retailer's risk attitude affects manufacturer's preferences over these three pricing schemes. When the retailer is risk-neutral, it bears all the risk and all three schemes lead to the same outcome. When the retailer is risk-averse, 2PT performs the worst from manufacturer s perspective but it leads to the highest total surplus. For a wide range of parameter values (but not for all) the manufacturer prefers MS to AU. By limiting the retailer's product substitution possibilities MS makes the demand for manufacturer s product more inelastic. This reduces the amount (share of total profits) the manufacturer needs to leave to the retailer for the latter to participate in the scheme.This study is funded from the Valencian Economic Research Institute (IVIE) and the European Commission
Precession of the Isolated Neutron Star PSR B1828-11
Stairs, Lyne & Shemar have found that arrival time residuals from PSR
B1828-11 vary periodically with a period of 500 days. This behavior can be
accounted for by precession of the radiopulsar, an interpretation that is
reinforced by the detection of variations in its pulse profile on the same
timescale. Here, we model the period residuals from PSR B1828-11 in terms of
precession of a triaxial rigid body. We include two contributions to the
residuals: (i) the geometric effect, which arises because the times at which
the pulsar emission beam points toward the observer varies with precession
phase; (ii) the spindown contribution, which arises from any dependence of the
spindown torque acting on the pulsar on the angle between its spin and magnetic
axes. We use the data to probe numerous properties of the pulsar, most notably
its shape, and the dependence of its spindown torque on the angle between its
spin and magnetic axes, for which we assume a sum of a spin-aligned component
(with a weight 1-a) and a dipolar component perpendicular to the magnetic beam
axis (weight a), rather than the vacuum dipole torque (a=1). We find that a
variety of shapes are consistent with the residuals, with a slight statistical
preference for a prolate star. Moreover, a range of torque possibilities fit
the data equally well, with no strong preference for the vacuum model. In the
case of a prolate star we find evidence for an angle-dependent spindown torque.
Our results show that the combination of geometrical and spin-down effects
associated with precession can account for the principal features of PSR
B1828-11's timing behavior, without fine tuning of the parameters.Comment: 22 pages, 14 figures, submitted to MNRAS; added references, corrected
typo
New formulations of the Hop-Constrained Minimum Spanning Tree problem via Miller–Tucker–Zemlin constraints
Cataloged from PDF version of article.Given an undirected network with positive edge costs and a natural number p, the Hop-Constrained Minimum
Spanning Tree problem (HMST) is the problem of finding a spanning tree with minimum total cost
such that each path starting from a specified root node has no more than p hops (edges). In this paper, we
develop new formulations for HMST. The formulations are based on Miller–Tucker–Zemlin (MTZ) subtour
elimination constraints, MTZ-based liftings in the literature offered for HMST, and a new set of topologyenforcing
constraints. We also compare the proposed models with the MTZ-based models in the literature
with respect to linear programming relaxation bounds and solution times. The results indicate that
the new models give considerably better bounds and solution times than their counterparts in the literature
and that the new set of constraints is competitive with liftings to MTZ constraints, some of which
are based on well-known, strong liftings of Desrochers and Laporte (1991).
2011 Elsevier B.V. All rights reserved
Optimization of transportation requirements in the deployment of military units
Cataloged from PDF version of article.We study the deployment planning problem (DPP) that may roughly be defined as the problem of the planning of
the physical movement of military units, stationed at geographically dispersed locations, from their home bases to
their designated destinations while obeying constraints on scheduling and routing issues as well as on the availability
and use of various types of transportation assets that operate on a multimodal transportation network. The DPP is a
large-scale real-world problem for which analytical models do not exist.We propose a model for solving the problem
and develop a solution methodology which involves an effective use of relaxation and restriction that significantly
speeds up a CPLEX-based branch-and-bound. The solution times for intermediate-sized problems are around 1 h
at maximum, whereas it takes about a week in the Turkish Armed Forces to produce a suboptimal feasible solution
based on trial-and-error methods. The proposed model can be used to evaluate and assess investment decisions
in transportation infrastructure and transportation assets as well as to plan and execute cost-effective deployment
operations at different levels of planning.
2005 Elsevier Ltd. All rights reserved
Electrical characteristics of B-GaN2O3 thin films grown by PEALD
Cataloged from PDF version of article.In this work, 7.5 nm Ga2O3 dielectric thin films have been deposited on p-type (111) silicon wafer using plasma enhanced atomic layer deposition (PEALD) technique. After the deposition, Ga2O3 thin films were annealed under N-2 ambient at 600, 700, and 800 degrees C to obtain beta-phase. The structure and microstructure of the beta-Ga2O3 thin films was carried out by using grazing-incidence X-ray diffraction (GIXRD). To show effect of annealing temperature on the microstructure of beta-Ga2O3 thin films, average crystallite size was obtained from the full width at half maximum (FWHM) of Bragg lines using the Scherrer formula. It was found that crystallite size increased with increasing annealing temperature and changed from 0.8 nm to 9.1 nm with annealing. In order to perform electrical characterization on the deposited films, Al/beta-Ga2O3/p-Si metal-oxide-semiconductor (MOS) type Schottky barrier diodes (SBDs) were fabricated using the beta-Ga2O3 thin films were annealed at 800 degrees C. The main electrical parameters such as leakage current level, reverse breakdown voltage, series resistance (R-S), ideality factor (n), zero-bias barrier height (phi(Bo)), and interface states (N-SS) were obtained from the current-voltage (I-V) and capacitance-voltage (C-V) measurements at room temperature. The RS values were calculated by using Cheung methods. The energy density distribution profile of the interface states as a function of (E-SS-E-V) was obtained from the forward bias I-V measurements by taking bias dependence of ideality factor, effective barrier height (phi(e)), and R-S into account. Also using the Norde function and C-V technique, phi(e) values were calculated and cross-checked. Results show that beta-Ga2O3 thin films deposited by PEALD technique at low temperatures can be used as oxide layer for MOS devices and electrical properties of these devices are influenced by some important parameters such as NSS, RS, and beta-Ga2O3 oxide layer. (C) 2014 Elsevier B.V. All rights reserved
Effect of post-deposition annealing on the electrical properties of B-Ga2O3 thin films grown on p-Si by plasma-enhanced atomic layer deposition
Cataloged from PDF version of article.Ga2O3 dielectric thin films were deposited on (111)-oriented p-type silicon wafers by plasma-enhanced atomic layer deposition using trimethylgallium and oxygen plasma. Structural analysis of the Ga 2O3 thin films was carried out using grazing-incidence x-ray diffraction. As-deposited films were amorphous. Upon postdeposition annealing at 700, 800, and 900°C for 30min under N2 ambient, films crystallized into β-form monoclinic structure. Electrical properties of the β-Ga2O3 thin films were then investigated by fabricating and characterizing Al/β-Ga2O3/p-Si metal-oxide-semiconductor capacitors. The effect of postdeposition annealing on the leakage current densities, leakage current conduction mechanisms, dielectric constants, flat-band voltages, reverse breakdown voltages, threshold voltages, and effective oxide charges of the capacitors were presented. The effective oxide charges (Qeff) were calculated from the capacitance-voltage (C-V) curves using the flat-band voltage shift and were found as 2.6×1012, 1.9×1012, and 2.5×10 12 cm-2 for samples annealed at 700, 800, and 900°C, respectively. Effective dielectric constants of the films decreased with increasing annealing temperature. This situation was attributed to the formation of an interfacial SiO2 layer during annealing process. Leakage mechanisms in the regions where current increases gradually with voltage were well fitted by the Schottky emission model for films annealed at 700 and 900°C, and by the Frenkel-Poole emission model for film annealed at 800°C. Leakage current density was found to improve with annealing temperature. β-Ga2O3 thin film annealed at 800°C exhibited the highest reverse breakdown field value. © 2014 American Vacuum Society
Pulsed Beam Tests at the SANAEM RFQ Beamline
A proton beamline consisting of an inductively coupled plasma (ICP) source,
two solenoid magnets, two steerer magnets and a radio frequency quadrupole
(RFQ) is developed at the Turkish Atomic Energy Authority's (TAEA) Saraykoy
Nuclear Research and Training Center (SNRTC-SANAEM) in Ankara. In Q4 of 2016,
the RFQ was installed in the beamline. The high power tests of the RF power
supply and the RF transmission line were done successfully. The high power RF
conditioning of the RFQ was performed recently. The 13.56 MHz ICP source was
tested in two different conditions, CW and pulsed. The characterization of the
proton beam was done with ACCTs, Faraday cups and a pepper-pot emittance meter.
Beam transverse emittance was measured in between the two solenoids of the
LEBT. The measured beam is then reconstructed at the entrance of the RFQ by
using computer simulations to determine the optimum solenoid currents for
acceptance matching of the beam. This paper will introduce the pulsed beam test
results at the SANAEM RFQ beamline. In addition, the high power RF conditioning
of the RFQ will be discussed.Comment: 6 pages, 6 figures. Proceedings of the International Particle
Accelerator Conference 2017 (IPAC'17), May 14-19, 2017, TUPAB015, p. 134
Template-based synthesis of aluminum nitride hollow Nanofibers via plasma-enhanced atomic layer deposition
Cataloged from PDF version of article.Aluminum nitride (AlN) hollow nanofibers were synthesized via plasma-enhanced atomic layer deposition using sacrificial electrospun polymeric nanofiber templates having different average fiber diameters (~70, ~330, and ~740 nm). Depositions were carried out at 200°C using trimethylaluminum and ammonia precursors. AlN-coated nanofibers were calcined subsequently at 500°C for 2 h to remove the sacrificial polymeric nanofiber template. SEM studies have shown that there is a critical wall thickness value depending on the template's average fiber diameter for AlN hollow nanofibers to preserve their shapes after the template has been removed by calcination. Best morphologies were observed for AlN hollow nanofibers prepared by depositing 800 cycles (corresponding to ~69 nm) on nanofiber templates having ~330 nm average fiber diameter. TEM images indicated uniform wall thicknesses of ~65 nm along the fiber axes for samples prepared using templates having ~70 and ~330 nm average fiber diameters. Synthesized AlN hollow nanofibers were polycrystalline with a hexagonal crystal structure as determined by high-resolution TEM and selected area electron diffraction. Chemical compositions of coated and calcined samples were studied using X-ray photoelectron spectroscopy (XPS). High-resolution XPS spectra confirmed the presence of AlN. © 2012 The American Ceramic Societ
Polymer-inorganic core-shell nanofibers by electrospinning and atomic layer deposition: flexible nylon-znO core-shell nanofiber mats and their photocatalytic activity
Cataloged from PDF version of article.Polymer-inorganic core-shell nanofibers were produced by two-step approach; electrospinning and atomic layer deposition (ALD). First, nylon 6,6 (polymeric core) nanofibers were obtained by electrospinning, and then zinc oxide (ZnO) (inorganic shell) with precise thickness control was deposited onto electrospun nylon 6,6 nanofibers using ALD technique. The bead-free and uniform nylon 6,6 nanofibers having different average fiber diameters (∼80, ∼240 and ∼650 nm) were achieved by using two different solvent systems and polymer concentrations. ZnO layer about 90 nm, having uniform thickness around the fiber structure, was successfully deposited onto the nylon 6,6 nanofibers. Because of the low deposition temperature utilized (200 °C), ALD process did not deform the polymeric fiber structure, and highly conformal ZnO layer with precise thickness and composition over a large scale were accomplished regardless of the differences in fiber diameters. ZnO shell layer was found to have a polycrystalline nature with hexagonal wurtzite structure. The core-shell nylon 6,6-ZnO nanofiber mats were flexible because of the polymeric core component. Photocatalytic activity of the core-shell nylon 6,6-ZnO nanofiber mats were tested by following the photocatalytic decomposition of rhodamine-B dye. The nylon 6,6-ZnO nanofiber mat, having thinner fiber diameter, has shown better photocatalytic efficiency due to higher surface area of this sample. These nylon 6,6-ZnO nanofiber mats have also shown structural stability and kept their photocatalytic activity for the second cycle test. Our findings suggest that core-shell nylon 6,6-ZnO nanofiber mat can be a very good candidate as a filter material for water purification and organic waste treatment because of their photocatalytic properties along with structural flexibility and stability. © 2012 American Chemical Society
- …