12 research outputs found

    Towards Real-Time Anomaly Detection within X-ray Security Imagery: Self-Supervised Adversarial Training Approach

    Get PDF
    Automatic threat detection is an increasingly important area in X-ray security imaging since it is critical to aid screening operators to identify concealed threats. Due to the cluttered and occluded nature of X-ray baggage imagery and limited dataset availability, few studies in the literature have systematically evaluated the automated X-ray security screening. This thesis provides an exhaustive evaluation of the use of deep Convolutional Neural Networks (CNN) for the image classification and detection problems posed within the field. The use of transfer learning overcomes the limited availability of the object of interest data examples. A thorough evaluation reveals the superiority of the CNN features over conventional hand-crafted features. Further experimentation also demonstrates the capability of the supervised deep object detection techniques as object localization strategies within cluttered X-ray security imagery. By addressing the limitations of the current X-ray datasets such as annotation and class-imbalance, the thesis subsequently transitions the scope to- wards deep unsupervised techniques for the detection of anomalies based on the training on normal (benign) X-ray samples only. The proposed anomaly detection models within the thesis employ a conditional encoder-decoder generative adversarial network that jointly learns the generation of high-dimensional image space and the inference of latent space — minimizing the distance between these images and the latent vectors during training aids in learning the data distribution for the normal samples. As a result, a larger distance metric from this learned data distribution at inference time is indicative of an outlier from that distribution — an anomaly. Experimentation over several benchmark datasets, from varying domains, shows the model efficacy and superiority over previous state-of-the-art approaches. Based on the current approaches and open problems in deep learning, the thesis finally provides discussion and future directions for X-ray security imagery

    Reimagining City Configuration: Automated Urban Planning via Adversarial Learning

    Full text link
    Urban planning refers to the efforts of designing land-use configurations. Effective urban planning can help to mitigate the operational and social vulnerability of a urban system, such as high tax, crimes, traffic congestion and accidents, pollution, depression, and anxiety. Due to the high complexity of urban systems, such tasks are mostly completed by professional planners. But, human planners take longer time. The recent advance of deep learning motivates us to ask: can machines learn at a human capability to automatically and quickly calculate land-use configuration, so human planners can finally adjust machine-generated plans for specific needs? To this end, we formulate the automated urban planning problem into a task of learning to configure land-uses, given the surrounding spatial contexts. To set up the task, we define a land-use configuration as a longitude-latitude-channel tensor, where each channel is a category of POIs and the value of an entry is the number of POIs. The objective is then to propose an adversarial learning framework that can automatically generate such tensor for an unplanned area. In particular, we first characterize the contexts of surrounding areas of an unplanned area by learning representations from spatial graphs using geographic and human mobility data. Second, we combine each unplanned area and its surrounding context representation as a tuple, and categorize all the tuples into positive (well-planned areas) and negative samples (poorly-planned areas). Third, we develop an adversarial land-use configuration approach, where the surrounding context representation is fed into a generator to generate a land-use configuration, and a discriminator learns to distinguish among positive and negative samples.Comment: Proceedings of the 28th International Conference on Advances in Geographic Information Systems (2020

    GANomaly: Semi-Supervised Anomaly Detection via Adversarial Training

    Get PDF
    Anomaly detection is a classical problem in computer vision, namely the determination of the normal from the abnormal when datasets are highly biased towards one class (normal) due to the insufficient sample size of the other class (abnormal). While this can be addressed as a supervised learning problem, a significantly more challenging problem is that of detecting the unknown/unseen anomaly case that takes us instead into the space of a one-class, semi-supervised learning paradigm. We introduce such a novel anomaly detection model, by using a conditional generative adversarial network that jointly learns the generation of high-dimensional image space and the inference of latent space. Employing encoder-decoder-encoder sub-networks in the generator network enables the model to map the input image to a lower dimension vector, which is then used to reconstruct the generated output image. The use of the additional encoder network maps this generated image to its latent representation. Minimizing the distance between these images and the latent vectors during training aids in learning the data distribution for the normal samples. As a result, a larger distance metric from this learned data distribution at inference time is indicative of an outlier from that distribution — an anomaly. Experimentation over several benchmark datasets, from varying domains, shows the model efficacy and superiority over previous state-of-the-art approaches

    Evaluating the potential of multi-temporal Sentinel-1 and Sentinel-2 data for regional mapping of olive trees

    No full text
    Olives are a crucial economic crop in Mediterranean countries. Detailed spatial information on the distribution and condition of crops at regional and national scales is essential to ensure the continuity of crop quality and yield efficiency. However, most earlier studies on olive tree mapping focused mainly on small parcels using single-sensor, very high resolution (VHR) data, which is time-consuming, expensive and cannot feasibly be scaled up to a larger area. Therefore, we evaluated the performance of Sentinel-1 and Sentinel-2 data fusion for the regional mapping of olive trees for the first time, using the Izmir Province of Türkiye, an ancient olive-growing region, as a case study. Three different monthly composite images reflecting the different phenological stages of olive trees were selected to separate olive trees from other land cover types. Seven land-cover classes, including olives, were mapped separately using a random forest classifier for each year between 2017 and 2021. The results were assessed using the k-fold cross-validation method, and the final olive tree map of Izmir was produced by combining the olive tree distribution over two consecutive years. District-level areas covered by olive trees were calculated and validated using official statistics from the Turkish Statistical Institute (TUIK). The K-fold cross-validation accuracy varied from 94% to 95% between 2017 and 2021, and the final olive map achieved 98% overall accuracy with 93% producer accuracy for the olive class. The district-level olive area was strongly related to the TUIK statistics (R 2 = 0.60, NRMSE = 0.64). This study used Sentinel data and Google Earth Engine (GEE) to produce a regional-scale olive distribution map that can be scaled up to the entire country and replicated elsewhere. This map can, therefore, be used as a foundation for other scientific studies on olive trees, particularly for the development of effective management practices.</p

    Generative Adversarial Framework for Depth Filling via Wasserstein Metric, Cosine Transform and Domain Transfer

    Get PDF
    In this work, the issue of depth filling is addressed using a self-supervised feature learning model that predicts missing depth pixel values based on the context and structure of the scene. A fully-convolutional generative model is conditioned on the available depth information and full RGB colour information from the scene and trained in an adversarial fashion to complete scene depth. Since ground truth depth is not readily available, synthetic data is instead used with a separate model developed to predict where holes would appear in a sensed (non-synthetic) depth image based on the contents of the RGB image. The resulting synthetic data with realistic holes is utilized in training the depth filling model which makes joint use of a reconstruction loss which employs the Discrete Cosine Transform for more realistic outputs, an adversarial loss which measures the distribution distances via the Wasserstein metric and a bottleneck feature loss that aids in better contextual feature execration. Additionally, the model is adversarially adapted to perform well on naturally-obtained data with no available ground truth. Qualitative and quantitative evaluations demonstrate the efficacy of the approach compared to contemporary depth filling techniques. The strength of the feature learning capabilities of the resulting deep network model is also demonstrated by performing the task of monocular depth estimation using our pre-trained depth hole filling model as the initialization for subsequent transfer learning
    corecore