197 research outputs found

    A Comparison of Risk Exposure in Aquaculture and Agricultural Businesses

    Get PDF
    Agriculture and aquaculture have common features associated with their biological nature affecting risk exposure of the businesses. The aim of this paper is to compare risk exposure in salmon farming and agricultural enterprises in Norway by using an implicit error component model to examine the risk structure of yields, prices and economic returns at the farm level. Results indicate a higher farm-level year-to-year variability in yields, prices and economic returns in salmon farming than in agricultural enterprises. The variability in livestock enterprises was generally lower than for crop enterprises. Return on assets was highest in salmon farming with an average annual return of 9.2%. All of the agricultural farm types exhibited a negative average return on assets on average. Stochastic dominance tests of the distribution of economic returns from aquaculture and agricultural farm types showed salmon farming to be the most risk efficient alternative and salmon farming was most attractive from an investor’s perspective.Risk analysis, variability, Norway, Risk and Uncertainty,

    The effects of leptin on F-actin remodelling in type 1 diabetes

    Get PDF
    Background: The aim of the current study is to investigate the effect of leptin on cytoskeleton structures in both in vivo and in vitro model of diabetes. Materials and methods: For in vivo studies, leptin in different doses (240, and 480 mg/kg) was injected to the diabetic rats after 1-week of streptozotocin (STZ, 55 mg/kg) treatment. Leptin levels were analysed in serum, liver, and pancreas samples. Hepatic and pancreatic F- and G-actin expressions were determined by Western blotting. For in vitro studies, hepatic and pancreatic primary cell lines were obtained from the control rats. To these cultures, STZ (15 and 30 mM), leptin (50, 60 and 100 ng/mL), and their combinations were applied for 1, 3, and 4 weeks. After the treatment period, F-actin was visualised by the Alexa-fluor fluorescent dye.  Results: Streptozotocin decreased the G-actin in both tissues in vivo. However, leptin caused a dose-dependent increase in G-actin levels while F-actin decreased in both tissues. Moreover, leptin caused the perimembranous condensation of actin filaments and amelioration of F-actin structures in vivo. A dose-dependent corruption of F-actin filament structures was observed in leptin-treated primary cells in vitro, while STZ also caused corruption of these filaments. Co-exposure of STZ and leptin caused the amelioration of F-actin filaments, while the peri- membranous condensation was also observed as was in vivo study.  Conclusions: Leptin therapy could be a candidate for diabetes, but it should not be ruled out as being important the severity of diabetes and leptin doses.

    Free-breathing late gadolinium enhancement CMR with a fixed short scan time using CosMo

    Get PDF
    To evaluate the performance of compressed sensing for motion correction (CosMo) [1] in compensating the respiratory motion of the heart in 3D late gadolinium enhancement (LGE) CMR

    Left Atrial scar assessment using imaging with isotropic spatial resolution and compressed sensing

    Get PDF
    Summary. We assess left atrial scar using late gadolinium enhancement (LGE) with isotropic spatial resolution of 1.43mm31.4^3 mm^3 by using highly accelerated LOST [1] reconstruction. Background. Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia [2]. Pulmonary vein isolation (PVI) using radiofrequency (RF)-ablation is the leading treatment for AF. Recently, LGE imaging of the LA has been used to identify atrial wall scar due to RF-ablation [3]. However, current LGE methods have limited spatial resolution that substantially impact assessment of scar in the complex geometry of PVs and LA. In this study, we sought to utilize prospective random k-space sampling and LOST [1] for accelerated LGE imaging, where reduction in imaging time was traded-off for improved isotropic spatial-resolution. Methods. 23 patients with history of AF (6 females, 58.1±9.658.1 \pm 9.6 years, 9 pre-PVI, 2 with history of PVI; 8 post-PVI; 3 with both pre and post-PVI) were recruited for this study. LGE images were acquired 10-to-20 minutes after bolus infusion of 0.2 mmol/kg Gd-DTPA. Free-breathing ECG-triggered navigator-gated inversion-recovery GRE sequences were used for all acquisitions (TR/TE/α=5.2/2.6ms/25°,FOV=320×320×100mmTR/TE/ \alpha = 5.2/2.6ms/25°, FOV=320×320×100mm). The PV inflow artifact reduction technique in [4] was also utilized. For each patient, a standard non-isotropic 3D LGE scan (1.4×1.4×4.0mm31.4×1.4×4.0mm^3) and a 3-fold-accelerated highresolution 3D LGE scan (1.43mm31.4^3 mm^3) were performed, with randomized acquisition order. For random undersampling, central k-space (45×35 in ky-kz) was fullysampled, edges randomly discarded, and phase reordering performed as in [5]. Acquisition times were ~4 mins assuming 100% scan-efficiency at 70bpm for both scans. All undersampled data were reconstructed offline using LOST [1]. LOST-reconstructed high-resolution, and standard LGE images were scored by two blinded readers for diagnostic value, presence of LGE(yes/no); and image quality in axial(Ax), coronal(Co) and sagittal (Sa) views (1=poor,4=excellent). Results. Three cases were declared non-diagnostic due to contrast-washout and imperfect inversion-time. LGE was visually present in 14 of the remaining 20 patients based on standard-LGE images, and 12 based on LOST-reconstructed ones (disagreement on one pre- and one postPVI patient). Figure 1 and 2 show comparisons of isotropic vs. non-isotropic LGE images in two patients. Image scores for LOST-LGE: Ax=2.90±0.70,Sa=3.33±0.66,Co=3.00±0.63 Ax=2.90 \pm 0.70, Sa=3.33 \pm 0.66, Co=3.00 \pm 0.63; and standard LGE: Ax=3.76±0.54,Sa=2.48±0.60,Co=2.24±0.44Ax=3.76 \pm 0.54, Sa=2.48 \pm 0.60, Co=2.24 \pm 0.44, where differences were significant in all views. Conclusions. LOST allows isotropic spatial-resolution in LGE for assessment of LA and PV scar. Isotropic resolution allows reformatting LGE images in any orientation and facilitates assessment of scar. Further clinical study is needed to assess if the improved spatial resolution will impact the diagnostic interpretation of data

    Quantifying resistance and resilience to local extinction for conservation prioritization

    Get PDF
    This is the final version. Available on open access from Ecological Society of America via the DOI in this recordSpecies-focused conservation planning is often based on reducing local extinction risk at key sites. However, with increasing levels of habitat fragmentation and pressures from climate change and overexploitation, surrounding landscapes also influence the persistence of species populations, and their effects are increasingly incorporated in conservation planning and management for both species and communities. Here, we present a framework based on metapopulation dynamics in fragmented landscapes, for quantifying the survival (resistance) and reestablishment of species populations following localized extinction events (resilience). We explore the application of this framework to guide the conservation of a group of threatened bird species endemic to papyrus (Cyperus papyrus) swamps in East and Central Africa. Using occupancy data for five species collected over two years from a network of wetlands in Uganda, we determine the local and landscape factors that influence local extinction and colonization, and map expected rates of population turnover across the network to draw inferences about the locations which contribute most to regional resistance and resilience for all species combined. Slight variation in the factors driving extinction and colonization between individual papyrus birds led to species-specific differences in the spatial patterns of site-level resistance and resilience. However, despite this, locations with the highest resistance and/or resilience overlapped for most species and reveal where resources could be invested for multi-species persistence. This novel simplified framework can aid decision making associated with conservation planning and prioritization for multiple species residing in overlapping, fragmented habitats; helping to identify key sites that warrant urgent conservation protection, with consideration of the need to adapt and respond to future change. This article is protected by copyright. All rights reserved.Natural Environment Research Council (NERC)The Explorers ClubBritish Ornithologists’ UnionRoyal Geographic SocietyJohn Muir TrustGilchrist Educational Trus

    Improved navigator-gated motion compensation in cardiac MR using additional constraint of magnitude of motion-corrupted data

    Get PDF
    Background. In conventional prospective respiratory navigator (NAV) acquisitions, 40-60% of the acquired data are discarded resulting in low efficiency and long scan times [1,2].Compressed-sensing Motion Compensation (CosMo) has a shorter fixed scan time by acquiring the full inner k-space and estimating the NAV-rejected outer k-space lines [3]. Respiratory motion will mainly manifest itself as phase variation in the acquired k-space data. We sought to determine if the addition of the magnitude of the rejected k-space lines as a constraint in image reconstruction will improve the performance of CosMo. Methods. To investigate the variability of the magnitude of kspace lines at different respiratory phases, free-breathing, ECG-triggered, targeted right coronary images with multiple averages were acquired from 10 healthy adult subjects. Magnitude variability was investigated quantitatively by calculating the cross-correlation between accepted and rejected k-space lines. CosMo was implemented retrospectively on one acquisition from each subject. The inner k-space (31 ky by 7 kz lines) was filled with lines acquired within the 5mm gating window from all acquisitions. The outer kspace was then filled only with lines from the first average acquired within the 5 mm gating window, resulting in an undersampled k-space with a fully sampled center. For reliable image reconstruction with CosMo, 10-20% of the inner k-space must be fully-sampled. The missing outer k-space lines were then estimated using LOST with an additional magnitude constraint within each estimation iteration or in the final iteration for each coil [4]. The results were compared with prospective NAVgating with a gating window of 5 mm and CosMo reconstruction without the magnitude constraint. Results. Figure 1 shows the cross-correlation between the accepted and worst rejected k-space lines for each position. The correlation is close to 1 at the center of kspace where the majority of image information is contained, indicating low variability in magnitude information at different respiratory phases. Figure 2 shows right coronary images acquired using a) fully-sampled, 5-mm gated data, b) the original CosMo, and CosMo with the additional magnitude constraint c) inside each iteration and d) in the final iteration. The relative signal-to-noise in the left ventricle blood pool is: 30.71±6.5;40.32±14.2;53.9±26.8;56.8±25.930.71 \pm 6.5; 40.32 \pm 14.2; 53.9 \pm 26.8; 56.8 \pm 25.9 for each reconstruction, respectively. Significant differences (p<0.05) are present for all measurements except between the original CosMo and the CosMo image with the magnitude constraint in each iteration (p=0.09). Conclusions. The addition of the magnitude of rejected lines, readily available in all navigator-gated scans, as a constraint in CosMo results in improved image quality as measured by relative SNR. Funding. NIH R01EB008743-01A2

    Measuring Terrestrial Area of Habitat (AOH) and Its Utility for the IUCN Red List

    Get PDF
    The International Union for Conservation of Nature (IUCN) Red List of Threatened Species includes assessment of extinction risk for 98 512 species, plus documentation of their range, habitat, elevation, and other factors. These range, habitat and elevation data can be matched with terrestrial land cover and elevation datasets to map the species’ area of habitat (AOH; also known as extent of suitable habitat; ESH). This differs from the two spatial metrics used for assessing extinction risk in the IUCN Red List criteria: extent of occurrence (EOO) and area of occupancy (AOO). AOH can guide conservation, for example, through targeting areas for field surveys, assessing proportions of species’ habitat within protected areas, and monitoring habitat loss and fragmentation. We recommend that IUCN Red List assessments document AOH wherever practical
    corecore