481 research outputs found

    Charge transfer electrostatic model of compositional order in perovskite alloys

    Full text link
    We introduce an electrostatic model including charge transfer, which is shown to account for the observed B-site ordering in Pb-based perovskite alloys. The model allows charge transfer between A-sites and is a generalization of Bellaiche and Vanderbilt's purely electrostatic model. The large covalency of Pb^{2+} compared to Ba^{2+} is modeled by an environment dependent effective A-site charge. Monte Carlo simulations of this model successfully reproduce the long range compositional order of both Pb-based and Ba-based complex A(BB^{'}B^{''})O_3 perovskite alloys. The models are also extended to study systems with A-site and B-site doping, such as (Na_{1/2}La_{1/2})(Mg_{1/3}Nb_{2/3})O_3, (Ba_{1-x}La_{x})(Mg_{(1+x)/3}Nb_{(2-x)/3})O_3 and (Pb_{1-x}La_{x})(Mg_{(1+x)/3}Ta_{(2-x)/3})O_3. General trends are reproduced by purely electrostatic interactions, and charge transfer effects indicate that local structural relaxations can tip the balance between different B-site orderings in Pb based materials.Comment: 15 pages, 6 figure

    Kinetic Monte Carlo Simulations of Crystal Growth in Ferroelectric Alloys

    Full text link
    The growth rates and chemical ordering of ferroelectric alloys are studied with kinetic Monte Carlo (KMC) simulations using an electrostatic model with long-range Coulomb interactions, as a function of temperature, chemical composition, and substrate orientation. Crystal growth is characterized by thermodynamic processes involving adsorption and evaporation, with solid-on-solid restrictions and excluding diffusion. A KMC algorithm is formulated to simulate this model efficiently in the presence of long-range interactions. Simulations were carried out on Ba(Mg_{1/3}Nb_{2/3})O_3 (BMN) type materials. Compared to the simple rocksalt ordered structures, ordered BMN grows only at very low temperatures and only under finely tuned conditions. For materials with tetravalent compositions, such as (1-x)Ba(Mg_{1/3}Nb_{2/3})O_3 + xBaZrO_3 (BMN-BZ), the model does not incorporate tetravalent ions at low-temperature, exhibiting a phase-separated ground state instead. At higher temperatures, tetravalent ions can be incorporated, but the resulting crystals show no chemical ordering in the absence of diffusive mechanisms.Comment: 13 pages, 16 postscript figures, submitted to Physics Review B Journa

    Director networks and informed traders

    Get PDF
    We provide evidence that sophisticated investors like short sellers, option traders, and financial institutions are more informed when trading stocks of companies with more connected board members. For firms with large director networks, the annualized return difference between the highest and lowest quintile of informed trading ranges from 4% to 7.2% compared to the same return difference in firms with less connected directors. Sophisticated investors better predict outcomes of upcoming earnings surprises and firm-specific news sentiment for companies with more connected directors. Changes in board connectedness are positively associated with changes in measures of adverse selection

    We need more prospective studies for Kounis syndrome

    Get PDF

    Electrostatic model of atomic ordering in complex perovskite alloys

    Full text link
    We present a simple ionic model which successfully reproduces the various types of compositional long-range order observed in a large class of complex insulating perovskite alloys. The model assumes that the driving mechanism responsible for the ordering is simply the electrostatic interaction between the different ionic species. A possible new explanation for the anomalous long-range order observed in some Pb relaxor alloys, involving the proposed existence of a small amount of Pb^4+ on the B sublattice, is suggested by an analysis of the model.Comment: 4 pages, two-column style with 1 postscript figure embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/index.html#lb_orde

    CVM studies on the atomic ordering in complex perovskite alloys

    Full text link
    The atomic ordering in complex perovskite alloys is investigated by the cluster variation method (CVM). For the 1/3\{111\}-type ordered structure, the order-disorder phase transition is the first order, and the order parameter of the 1:2 complex perovskite reaches its maximum near x=0.25. For the 1/2\{111\}-type ordered structure, the ordering transition is the second order. Phase diagrams for both ordered structures are obtained. The order-disorder line obeys the linear law.Comment: 10 pages, 6 figure

    Heterovalent and A-atom effects in A(B'B'')O3 perovskite alloys

    Full text link
    Using first-principles supercell calculations, we have investigated energetic, structural and dielectric properties of three different A(B'B'')O_3 perovskite alloys: Ba(Zn_{1/3}Nb_{2/3})O_3 (BZN), Pb(Zn_{1/3}Nb_{2/3})O_3 (PZN), and Pb(Zr_{1/3}Ti_{2/3})O_3 (PZT). In the homovalent alloy PZT, the energetics are found to be mainly driven by atomic relaxations. In the heterovalent alloys BZN and PZN, however, electrostatic interactions among B' and B'' atoms are found to be very important. These electrostatic interactions are responsible for the stabilization of the observed compositional long-range order in BZN. On the other hand, cell relaxations and the formation of short Pb--O bonds could lead to a destabilization of the same ordered structure in PZN. Finally, comparing the dielectric properties of homovalent and heterovalent alloys, the most dramatic difference arises in connection with the effective charges of the B' atom. We find that the effective charge of Zr in PZT is anomalous, while in BZN and PZN the effective charge of Zn is close to its nominal ionic value.Comment: 7 pages, two-column style with 2 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/index.html#lb_he
    corecore