We introduce an electrostatic model including charge transfer, which is shown
to account for the observed B-site ordering in Pb-based perovskite alloys. The
model allows charge transfer between A-sites and is a generalization of
Bellaiche and Vanderbilt's purely electrostatic model. The large covalency of
Pb^{2+} compared to Ba^{2+} is modeled by an environment dependent effective
A-site charge. Monte Carlo simulations of this model successfully reproduce the
long range compositional order of both Pb-based and Ba-based complex
A(BB^{'}B^{''})O_3 perovskite alloys. The models are also extended to study
systems with A-site and B-site doping, such as
(Na_{1/2}La_{1/2})(Mg_{1/3}Nb_{2/3})O_3,
(Ba_{1-x}La_{x})(Mg_{(1+x)/3}Nb_{(2-x)/3})O_3 and
(Pb_{1-x}La_{x})(Mg_{(1+x)/3}Ta_{(2-x)/3})O_3. General trends are reproduced by
purely electrostatic interactions, and charge transfer effects indicate that
local structural relaxations can tip the balance between different B-site
orderings in Pb based materials.Comment: 15 pages, 6 figure