4 research outputs found

    Ultrasonically Assisted Preparation of Polysaccharide Microcontainers for Hydrophobic Drugs

    Get PDF
    Stable polysaccharide microcontainers are fabricated by ultrasonically assisted procedure. Ultrasound induces formation of permanent microcontainer shell due to interaction between chitosan and xanthan gum. The obtained system has a core-shell structure with high loading capacity for hydrophobic molecules. The permanent polymer shell thickness of 7-10 nm allows to maintain the microcontainer stability for more than 4 months. The microcontainers in a wide size range of 350-7500 nm were obtained by changing an overall emulsion viscosity. Uptake of the microcontainers by mouse melanoma M3 cells was studied by flow cytometry and confocal microcscopy. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3546

    ЀотодинамичСская тСрапия солидных ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ in vitro ΠΈ in vivo с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ Ρ€ΠΈΠ±ΠΎΡ„Π»Π°Π²ΠΈΠ½Π° ΠΈ Π½Π°Π½ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½Ρ‹Ρ… Π°ΠΏΠΊΠΎΠ½Π²Π΅Ρ€Ρ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… фосфоров

    No full text
    Rationale: Riboflavin (vitamin B2) is one of the most promising agents for photodynamic therapy (PDT). However, its use is limited by the excitation in the ultraviolet (UV) and visible spectral ranges and, as a result, by a small penetration into biological tissue not exceeding a few millimeters. This problem could be solved by approaches ensuring excitation of riboflavin molecules within tumor tissues by infrared (IR) light. Upconversion nanoparticles (UCNPs) can be potentially considered as mediators able to effectively convert the exciting radiation of the near IR range, penetrating into biological tissue to a 3 cm depth, into the photoluminescence in the UV and visible spectral ranges.Aim: To evaluate the efficacy of UCNPs for IR-mediated riboflavin activation in the depth of tumor tissue during PDT. Materials and methods: The water-soluble riboflavin flavin mononucleotide (FMN, Pharmstandard-UfaVITA, Russia) was used as a photosensitizer in in vitro and in vivo experiments. The in vitro experiments were performed on human breast adenocarcinoma SK-BR-3, human glioblastoma U-87 MG, and rat glioma C6 cell lines. Lewis lung carcinoma (LLC) inoculated to hybrid BDF1 mice was used as a model to demonstrate the delivery of FMN to the tumor. UCNPs with a core/shell structure [NaYF4:Yb3+, Tm3+/NaYF4] were used for photoactivation of FMN in vivo. PDT based on FMN, UCNPs and laser radiation 975 nm (IR) was performed on mouse xenografts of human breast adenocarcinoma SKBR-3.Results: We were able to show that FMN could act as an effective in vitro photosensitizer for SK-BR-3, U-87 MG, and C6 cell lines. FMN IC50 values for glioma cells were ~30 ΞΌM, and for SK-BR-3 cell line ~50 ΞΌM (24 h incubation, irradiation 4.2 J/cm2). In the LLC model, the appropriate concentration of FMN (30 ΞΌM and above) can be achieved in the tumor as a result of systemic administration of FMN (at 2 and 24 hours after injection). The effect of PDT using near IR light for UCNP-mediated excitation of FMN was demonstrated in mouse xenografts SKBR-3, with the tumor growth inhibition of 90Β±5%.Conclusion: The study has demonstrated the possibility to use riboflavin (vitamin B2) as a photosensitizer for PDT. The photoexcitation of FMN via the anti-Stokes photoluminescence of UCNPs allows for implementation of the PDT technique with the near IR spectral range.ОбоснованиС. Π ΠΈΠ±ΠΎΡ„Π»Π°Π²ΠΈΠ½ (Π²ΠΈΡ‚Π°ΠΌΠΈΠ½ Π’2) считаСтся ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ пСрспСктивных Π°Π³Π΅Π½Ρ‚ΠΎΠ² для фотодинамичСской Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ. Однако Π΅Π³ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΎ Π²ΠΎΠ·Π±ΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅ΠΌ Π² ΡƒΠ»ΡŒΡ‚Ρ€Π°Ρ„ΠΈΠΎΠ»Π΅Ρ‚ΠΎΠ²ΠΎΠΌ (Π£Π€) ΠΈ синСм Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π°Ρ… спСктра ΠΈ, ΠΊΠ°ΠΊ слСдствиС, ΠΌΠ°Π»ΠΎΠΉ (Π½Π΅ Π±ΠΎΠ»Π΅Π΅ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… ΠΌΠΈΠ»Π»ΠΈΠΌΠ΅Ρ‚Ρ€ΠΎΠ²) Π³Π»ΡƒΠ±ΠΈΠ½ΠΎΠΉ проникновСния Π² Π±ΠΈΠΎΡ‚ΠΊΠ°Π½ΡŒ. РСшСниСм Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ видится Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ², ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ… Ρ„ΠΎΡ‚ΠΎΠ²ΠΎΠ·Π±ΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Ρ€ΠΈΠ±ΠΎΡ„Π»Π°Π²ΠΈΠ½Π° ΠΏΠΎΠ΄ дСйствиСм инфракрасного (ИК) свСта Π² Π³Π»ΡƒΠ±ΠΈΠ½Π΅ ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ. Π’ качСствС посрСдника, способного эффСктивно ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Ρ‹Π²Π°Ρ‚ΡŒ Π²ΠΎΠ·Π±ΡƒΠΆΠ΄Π°ΡŽΡ‰Π΅Π΅ ΠΈΠ·Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π±Π»ΠΈΠΆΠ½Π΅Π³ΠΎ ИК Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π°, ΠΏΡ€ΠΎΠ½ΠΈΠΊΠ°ΡŽΡ‰Π΅Π΅ Π² Π±ΠΈΠΎΡ‚ΠΊΠ°Π½ΡŒ Π½Π° Π³Π»ΡƒΠ±ΠΈΠ½Ρƒ Π΄ΠΎ 3 см, Π² Ρ„ΠΎΡ‚ΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ†ΠΈΡŽ Π£Π€ ΠΈ Π²ΠΈΠ΄ΠΈΠΌΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° спСктра, ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ рассмотрСны Π½Π°Π½ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½Ρ‹Π΅ Π°ΠΏΠΊΠΎΠ½Π²Π΅Ρ€Ρ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ фосфоры (НАЀ).ЦСль – ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ использования НАЀ для ИК-опосрСдованной Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ Ρ€ΠΈΠ±ΠΎΡ„Π»Π°Π²ΠΈΠ½Π° Π² Π³Π»ΡƒΠ±ΠΈΠ½Π΅ ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ фотодинамичСской Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Водорастворимая Ρ„ΠΎΡ€ΠΌΠ° Ρ€ΠΈΠ±ΠΎΡ„Π»Π°Π²ΠΈΠ½Π° – Ρ„Π»Π°Π²ΠΈΠ½ΠΌΠΎΠ½ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ (ЀМН) (Ѐармстандарт-Π£Ρ„Π°Π’Π˜Π’Π, Россия) – Π±Ρ‹Π» использован Π² качСствС фотосСнсибилизатора Π² экспСримСнтах in vitro ΠΈ in vivo. ЭкспСримСнты in vitro Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Ρ‹ Π½Π° ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… линиях Π°Π΄Π΅Π½ΠΎΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΡ‹ ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° SK-BR-3, глиобластомы Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° U-87 MG ΠΈ Π³Π»ΠΈΠΎΠΌΡ‹ крысы C6. ΠšΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΠ° Π»Π΅Π³ΠΊΠΎΠ³ΠΎ Π›ΡŒΡŽΠΈΡ, пСрСвитая ΠΌΡ‹ΡˆΠ°ΠΌ-Π³ΠΈΠ±Ρ€ΠΈΠ΄Π°ΠΌ BDF1, Π±Ρ‹Π»Π° использована Π² качСствС ΠΌΠΎΠ΄Π΅Π»ΠΈ для дСмонстрации доставки ЀМН Π² ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΡƒΡŽ Ρ‚ΠΊΠ°Π½ΡŒ. Для Ρ„ΠΎΡ‚ΠΎΠ°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ ЀМН in vivo ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΠ»ΠΈΡΡŒ НАЀ со структурой «ядро/ΠΎΠ±ΠΎΠ»ΠΎΡ‡ΠΊΠ°Β» [NaYF4:Yb3+, Tm3+/NaYF4]. ЀотодинамичСская тСрапия Π½Π° основС ЀМН, НАЀ ΠΈ Π»Π°Π·Π΅Ρ€Π½ΠΎΠ³ΠΎ излучСния 975 Π½ΠΌ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»Π°ΡΡŒ Π½Π° ксСнографтах ΠΌΡ‹ΡˆΠΈ SK-BR-3.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Показано, Ρ‡Ρ‚ΠΎ ЀМН ΠΌΠΎΠΆΠ΅Ρ‚ Π²Ρ‹ΡΡ‚ΡƒΠΏΠ°Ρ‚ΡŒ Π² качСствС эффСктивного фотосСнсибилизатора in vitro Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π»ΠΈΠ½ΠΈΠΉ SK-BR-3, U-87 MG ΠΈ C6. ЗначСния IC50 для ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π³Π»ΠΈΠΎΠΌΡ‹ составляли ~30 мкМ ЀМН, Π° для ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΡ‹ ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ SK-BR-3 ~50 мкМ ЀМН (24 Ρ‡ ΠΈΠ½ΠΊΡƒΠ±Π°Ρ†ΠΈΠΈ, ΠΎΠ±Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅ 4,2 Π”ΠΆ/см2). Π‘ использованиСм ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΡ‹ Π»Π΅Π³ΠΊΠΎΠ³ΠΎ Π›ΡŒΡŽΠΈΡ установлСно, Ρ‡Ρ‚ΠΎ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π°Ρ концСнтрация ЀМН (30 мкМ ΠΈ Π²Ρ‹ΡˆΠ΅) ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ достигнута Π² ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ систСмного ввСдСния ЀМН (Ρ‡Π΅Ρ€Π΅Π· 2 ΠΈ 24 часа послС ввСдСния). На ксСнографтах ΠΌΡ‹ΡˆΠΈ SK-BR-3 продСмонстрирован эффСкт фотодинамичСской Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ с использованиСм свСта Π±Π»ΠΈΠΆΠ½Π΅Π³ΠΎ ИК Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° для НАЀ-опосрСдованного возбуТдСния ЀМН, Ρ‚ΠΎΡ€ΠΌΠΎΠΆΠ΅Π½ΠΈΠ΅ роста ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ ΠΏΡ€ΠΈ этом составило 90Β±5%.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠŸΡ€ΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ примСнСния Ρ€ΠΈΠ±ΠΎΡ„Π»Π°Π²ΠΈΠ½Π° (Π²ΠΈΡ‚Π°ΠΌΠΈΠ½Π° Π’2) Π² качСствС фотосСнсибилизатора для фотодинамичСской Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ. ИспользованиС ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π°, основанного Π½Π° Ρ„ΠΎΡ‚ΠΎΠ²ΠΎΠ·Π±ΡƒΠΆΠ΄Π΅Π½ΠΈΠΈ ЀМН Ρ‡Π΅Ρ€Π΅Π· Π°Π½Ρ‚ΠΈΡΡ‚ΠΎΠΊΡΠΎΠ²ΡƒΡŽ Ρ„ΠΎΡ‚ΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ†ΠΈΡŽ НАЀ, позволяСт Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄ фотодинамичСской Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ свСта ΠΈΠ· Π±Π»ΠΈΠΆΠ½Π΅Π³ΠΎ ИК Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° спСктра

    Novel Copper-Containing Cytotoxic Agents Based on 2-Thioxoimidazolones

    No full text
    A series of 73 ligands and 73 of their Cu+2 and Cu+1 copper complexes with different geometries, oxidation states of the metal, and redox activities were synthesized and characterized. The aim of the study was to establish the structure-activity relationship within a series of analogues with different substituents at the N(3) position, which govern the redox potentials of the Cu+2/Cu+1 redox couples, ROS generation ability, and intracellular accumulation. Possible cytotoxicity mechanisms, such as DNA damage, DNA intercalation, telomerase inhibition, and apoptosis induction, have been investigated. ROS formation in MCF-7 cells and three-dimensional (3D) spheroids was proven using the Pt-nanoelectrode. Drug accumulation and ROS formation at 40-60 ΞΌm spheroid depths were found to be the key factors for the drug efficacy in the 3D tumor model, governed by the Cu+2/Cu+1 redox potential. A nontoxic in vivo single-dose evaluation for two binuclear mixed-valence Cu+1/Cu+2 redox-active coordination compounds, 72k and 61k, was conducted.
    corecore