30 research outputs found

    Mechanisms of progression of chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) occurs in all age groups, including children. Regardless of the underlying cause, CKD is characterized by progressive scarring that ultimately affects all structures of the kidney. The relentless progression of CKD is postulated to result from a self-perpetuating vicious cycle of fibrosis activated after initial injury. We will review possible mechanisms of progressive renal damage, including systemic and glomerular hypertension, various cytokines and growth factors, with special emphasis on the renin–angiotensin–aldosterone system (RAAS), podocyte loss, dyslipidemia and proteinuria. We will also discuss possible specific mechanisms of tubulointerstitial fibrosis that are not dependent on glomerulosclerosis, and possible underlying predispositions for CKD, such as genetic factors and low nephron number

    Astrocytes: biology and pathology

    Get PDF
    Astrocytes are specialized glial cells that outnumber neurons by over fivefold. They contiguously tile the entire central nervous system (CNS) and exert many essential complex functions in the healthy CNS. Astrocytes respond to all forms of CNS insults through a process referred to as reactive astrogliosis, which has become a pathological hallmark of CNS structural lesions. Substantial progress has been made recently in determining functions and mechanisms of reactive astrogliosis and in identifying roles of astrocytes in CNS disorders and pathologies. A vast molecular arsenal at the disposal of reactive astrocytes is being defined. Transgenic mouse models are dissecting specific aspects of reactive astrocytosis and glial scar formation in vivo. Astrocyte involvement in specific clinicopathological entities is being defined. It is now clear that reactive astrogliosis is not a simple all-or-none phenomenon but is a finely gradated continuum of changes that occur in context-dependent manners regulated by specific signaling events. These changes range from reversible alterations in gene expression and cell hypertrophy with preservation of cellular domains and tissue structure, to long-lasting scar formation with rearrangement of tissue structure. Increasing evidence points towards the potential of reactive astrogliosis to play either primary or contributing roles in CNS disorders via loss of normal astrocyte functions or gain of abnormal effects. This article reviews (1) astrocyte functions in healthy CNS, (2) mechanisms and functions of reactive astrogliosis and glial scar formation, and (3) ways in which reactive astrocytes may cause or contribute to specific CNS disorders and lesions

    The effect of acetylcholine on rat olfactory bulb unit activity

    No full text
    International audienceThe olfactory bulb (OB) of the rat receives an extrinsic innervation from the most anterior part of the basal forebrain cholinergic complex. The effect of microiontophoretically applied acetylcholine (ACh) on OB unit activity was studied in 16 adult male rats. A total of 80 units was recorded and in 50% of the cases the cell layer where the recording was done was clearly identified. The results provide evidence for a particularly high level of sensitivity to ACh in the outer glomerular layer (73%). Both inhibitory and excitatory responses were found. These results are in agreement with histological studies indicating that this layer presents the highest density of cholinergic terminals. As a whole, present knowledge suggests the existence of a strong cholinergic control of the olfactory input at the level of the first synapse in the system
    corecore