13 research outputs found

    Molecular Crowding Enhanced ATPase Activity of the RNA Helicase eIF4A Correlates with Compaction of Its Quaternary Structure and Association with eIF4G

    No full text
    Enzymatic reactions occur in a crowded and confined environment <i>in vivo,</i> containing proteins, RNA and DNA. Previous reports have shown that interactions between macromolecules, and reactions rates differ significantly between crowded environments and dilute buffers. However, the direct effect of crowding on the level of high-resolution structures of macromolecules has not been extensively analyzed and is not well understood. Here we analyze the effect of macromolecular crowding on structure and function of the human translation initiation factors eIF4A, a two-domain DEAD-Box helicase, the HEAT-1 domain of eIF4G, and their complex. We find that crowding enhances the ATPase activity of eIF4A, which correlates with a shift to a more compact structure as revealed with small-angle X-ray scattering. However, the individual domains of eIF4A, or the eIF4G-HEAT-1 domain alone show little structural changes due to crowding except for flexible regions. Thus, the effect of macromolecular crowding on activity and structure need to be taken into account when evaluating enzyme activities and structures of multidomain proteins, proteins with flexible regions, or protein complexes obtained by X-ray crystallography, NMR, or other structural methods

    Pyrovanadolysis, a Pyrophosphorolysis-like Reaction Mediated by Pyrovanadate, Mn2+, and DNA Polymerase of Bacteriophage T7

    Get PDF
    DNA polymerases catalyze the 3'–5'-pyrophosphorolysis of a DNA primer annealed to a DNA template in the presence of pyrophosphate (PPi). In this reversal of the polymerization reaction, deoxynucleotides in DNA are converted to deoxynucleoside 5'-triphosphates. Based on the charge, size, and geometry of the oxygen connecting the two phosphorus atoms of PPi, a variety of compounds was examined for their ability to carry out a reaction similar to pyrophosphorolysis. We describe a manganese-mediated pyrophosphorolysis-like activity using pyrovanadate (VV) catalyzed by the DNA polymerase of bacteriophage T7. We designate this reaction pyrovanadolysis. X-ray absorption spectroscopy reveals a shorter Mn-V distance of the polymerase-VV complex than the Mn-P distance of the polymerase-PPi complex. This structural arrangement at the active site accounts for the enzymatic activation by Mn-VV. We propose that the Mn2+, larger than Mg2+, fits the polymerase active site to mediate binding of VV into the active site of the polymerase. Our results may be the first documentation that vanadium can substitute for phosphorus in biological processes.
    corecore