117 research outputs found
A Hydrophobic Gate in an Ion Channel: The Closed State of the Nicotinic Acetylcholine Receptor
The nicotinic acetylcholine receptor (nAChR) is the prototypic member of the
`Cys-loop' superfamily of ligand-gated ion channels which mediate synaptic
neurotransmission, and whose other members include receptors for glycine,
gamma-aminobutyric acid, and serotonin. Cryo-electron microscopy has yielded a
three dimensional structure of the nAChR in its closed state. However, the
exact nature and location of the channel gate remains uncertain. Although the
transmembrane pore is constricted close to its center, it is not completely
occluded. Rather, the pore has a central hydrophobic zone of radius about 3 A.
Model calculations suggest that such a constriction may form a hydrophobic
gate, preventing movement of ions through a channel. We present a detailed and
quantitative simulation study of the hydrophobic gating model of the nicotinic
receptor, in order to fully evaluate this hypothesis. We demonstrate that the
hydrophobic constriction of the nAChR pore indeed forms a closed gate.
Potential of mean force (PMF) calculations reveal that the constriction
presents a barrier of height ca. 10 kT to the permeation of sodium ions,
placing an upper bound on the closed channel conductance of 0.3 pS. Thus, a 3 A
radius hydrophobic pore can form a functional barrier to the permeation of a 1
A radius Na+ ion. Using a united atom force field for the protein instead of an
all atom one retains the qualitative features but results in differing
conductances, showing that the PMF is sensitive to the detailed molecular
interactions.Comment: Accepted by Physical Biology; includes a supplement and a
supplementary mpeg movie can be found at
http://sbcb.bioch.ox.ac.uk/oliver/download/Movies/watergate.mp
Mechanisms of the noxious inflammatory cycle in cystic fibrosis
Multiple evidences indicate that inflammation is an event occurring prior to infection in patients with cystic fibrosis. The self-perpetuating inflammatory cycle may play a pathogenic part in this disease. The role of the NF-κB pathway in enhanced production of inflammatory mediators is well documented. The pathophysiologic mechanisms through which the intrinsic inflammatory response develops remain unclear. The unfolded mutated protein cystic fibrosis transmembrane conductance regulator (CFTRΔF508), accounting for this pathology, is retained in the endoplasmic reticulum (ER), induces a stress, and modifies calcium homeostasis. Furthermore, CFTR is implicated in the transport of glutathione, the major antioxidant element in cells. CFTR mutations can alter redox homeostasis and induce an oxidative stress. The disturbance of the redox balance may evoke NF-κB activation and, in addition, promote apoptosis. In this review, we examine the hypotheses of the integrated pathogenic processes leading to the intrinsic inflammatory response in cystic fibrosis
ATP release via anion channels
ATP serves not only as an energy source for all cell types but as an ‘extracellular messenger-for autocrine and paracrine signalling. It is released from the cell via several different purinergic signal efflux pathways. ATP and its Mg2+ and/or H+ salts exist in anionic forms at physiological pH and may exit cells via some anion channel if the pore physically permits this. In this review we survey experimental data providing evidence for and against the release of ATP through anion channels. CFTR has long been considered a probable pathway for ATP release in airway epithelium and other types of cells expressing this protein, although non-CFTR ATP currents have also been observed. Volume-sensitive outwardly rectifying (VSOR) chloride channels are found in virtually all cell types and can physically accommodate or even permeate ATP4- in certain experimental conditions. However, pharmacological studies are controversial and argue against the actual involvement of the VSOR channel in significant release of ATP. A large-conductance anion channel whose open probability exhibits a bell-shaped voltage dependence is also ubiquitously expressed and represents a putative pathway for ATP release. This channel, called a maxi-anion channel, has a wide nanoscopic pore suitable for nucleotide transport and possesses an ATP-binding site in the middle of the pore lumen to facilitate the passage of the nucleotide. The maxi-anion channel conducts ATP and displays a pharmacological profile similar to that of ATP release in response to osmotic, ischemic, hypoxic and salt stresses. The relation of some other channels and transporters to the regulated release of ATP is also discussed
Social Work\u27s Response to Poverty: From Benefits Dependence to Economic Self-Sufficiency
This article appears in the Journal of Social Work Education’s Special Section on Financial Capability and Asset Building. an earlier version of this article was presented during the April 2015 conference, Financial Capability and Asset Building: Advancing Education, Research, and Practice in Social Work. The conference was hosted by the Center for Social Development and the Financial Social Work Initiative at the University of Maryland School of Social Work
- …