4,405 research outputs found

    Effects of boron and gibberellic acid on in vitro pollen germination of pistachio (Pistacia vera L.)

    Get PDF
    This study was conducted on male pistachio cultivars which consisted of Uygur, Atli, Kaska, Sengel and Kavak to study the influence of boron and gibberellin on pollen germination in vitro. Pollen was sown in germination media that included 20% sucrose, 10, 25, 50, 75 and 100 ppm boric acid (H3BO3) and gibberellic acid (GA3), separately. It was found that pollen germination for all cultivars were greatly reduced with increased GA3 concentration in the germination medium and reached the lowest value at the 100 ppm GA3 whereas germination was decreased up to 25 ppm in H3BO3 and gradually increased again to 100 ppm. With the mediums of boric acid and gibberellic acid ranging from 0 - 100 ppm, the amount and pattern of response in pollen germinability varied among cultivars considerably. Pollen germination was severely inhibited by GA3 and slightly promoted by boron. The results suggest that gibberellic acid had adverse effects on pollen germination of pistachio.Key words: Pistachio, Pistacia vera, in vitro, pollen germination, boron, gibberellic acid

    Detecting Progression of Treated Choroidal Melanomas: Is Ultrasonography Necessary?

    Get PDF
    Prompt detection and treatment of local treatment failure after radiotherapy for choroidal melanoma optimises any opportunities for conserving vision and the eye, possibly reducing an increased risk of metastatic disease. Long-term surveillance is therefore required but is hampered by the perceived need to perform ultrasonography, which may not be available at a patient’s local hospital. The aim of this study was to determine whether local treatment failure can reliably be detected with colour fundus photography alone, and, if so, in which patients. Patients were included in the study if diagnosed with local treatment failure between April 2016 and February 2021 after eye-conserving therapy for choroidal melanoma. Wide-field colour and fundal autofluorescence (FAF) images, optical coherence tomography (OCT), and ultrasonography (US) were analysed by two of the authors (GN and UH). The cohort included 87 patients with local treatment failure. In 75 patients with clear media, tumour progression was detected by colour photography alone in 74 (98.7%) patients. Sensitivity was not increased by the addition of either OCT or AF. One patient with clear media developed extraocular extension detected with US without visible change in the intraocular part of the tumour. In the other 12 patients, US was required because of opaque media and a consequently poor fundal view. Local treatment failure after radiotherapy for choroidal melanoma is detected in 98.7% of cases with colour photography when the media are clear. Ultrasonography is useful when photography is prevented by opaque media or tumours having locations in the far periphery

    Surface modification of HVOF thermal sprayed WC–CoCr coatings by laser treatment

    Get PDF
    In this work the affects of laser characteristics on microstructure and microhardness of high velocity oxygen fuel sprayed (HVOF) WC–CoCr coatings were investigated. The coating was deposited with a Sulzer Metco WokaJet™-400 kerosene fuel and the laser surface treatments were applied using CO2 laser with 10.6 μm wavelength. Large variations in surface properties were produced from variation in the laser processing parameters. In total, four levels of peak power (100, 200, 300 and 350 W), four levels of spot diameter (0.2, 0.4, 0.6 and 1 mm) and three levels of pulse repetition frequency (PRF) were investigated. An initial set of tests were followed by a more detailed 33 factorial design of experiments. Pulse repetition frequency and duty cycle were set in order to maintain the same overlap in the x and y directions for the raster scanned sample spot impact dimensions. Overlaps of 30% were used in the initial tests and 10% in the more detailed trials. The results have shown that care must be taken to keep the irradiance at a relatively low level compared to uncoated surfaces. High irradiance can in this case result in rough and porous surfaces. Lower levels of irradiance are shown to provide more uniform microstructures, reduced porosity and increased microhardness

    Tunable magnetic exchange interactions in manganese-doped inverted core/shell ZnSe/CdSe nanocrystals

    Full text link
    Magnetic doping of semiconductor nanostructures is actively pursued for applications in magnetic memory and spin-based electronics. Central to these efforts is a drive to control the interaction strength between carriers (electrons and holes) and the embedded magnetic atoms. In this respect, colloidal nanocrystal heterostructures provide great flexibility via growth-controlled `engineering' of electron and hole wavefunctions within individual nanocrystals. Here we demonstrate a widely tunable magnetic sp-d exchange interaction between electron-hole excitations (excitons) and paramagnetic manganese ions using `inverted' core-shell nanocrystals composed of Mn-doped ZnSe cores overcoated with undoped shells of narrower-gap CdSe. Magnetic circular dichroism studies reveal giant Zeeman spin splittings of the band-edge exciton that, surprisingly, are tunable in both magnitude and sign. Effective exciton g-factors are controllably tuned from -200 to +30 solely by increasing the CdSe shell thickness, demonstrating that strong quantum confinement and wavefunction engineering in heterostructured nanocrystal materials can be utilized to manipulate carrier-Mn wavefunction overlap and the sp-d exchange parameters themselves.Comment: To appear in Nature Materials; 18 pages, 4 figures + Supp. Inf

    Classification Criteria for Intermediate Uveitis, Non–Pars Planitis Type

    Get PDF
    Purpose: To determine classification criteria for intermediate uveitis, non-pars planitis type (IU- NPP, also known as undifferentiated intermediate uveitis) / Design: Machine learning of cases with IU-NPP and 4 other intermediate uveitides. / Methods: Cases of intermediate uveitides were collected in an informatics-designed preliminary database, and a final database was constructed of cases achieving supermajority agreement on the diagnosis, using formal consensus techniques. Cases were split into a training set and a validation set. Machine learning using multinomial logistic regression was used on the training set to determine a parsimonious set of criteria that minimized the misclassification rate among the intermediate uveitides. The resulting criteria were evaluated on the validation set. / Results: Five hundred eighty-nine of cases of intermediate uveitides, including 114 cases of IU-NPP, were evaluated by machine learning. The overall accuracy for intermediate uveitides was 99.8% in the training set and 99.3% in the validation set (95% confidence interval 96.1, 99.9). Key criteria for IU-NPP included unilateral or bilateral intermediate uveitis with neither 1) snowballs in the vitreous nor 2) snowbanks on the pars plana. Other key exclusions included: 1) multiple sclerosis, 2) sarcoidosis, and 3) syphilis. The misclassification rates for pars planitis were 0 % in the training set and 0% in the validation set, respectively. / Conclusions: The criteria for IU-NPP had a low misclassification rate and appeared to perform well enough for use in clinical and translational research

    Classification Criteria for Multiple Sclerosis-Associated Intermediate Uveitis

    Get PDF
    PURPOSE: The purpose of this study was to determine classification criteria for multiple sclerosis-associated intermediate uveitis. DESIGN: Machine learning of cases with multiple sclerosis-associated intermediate uveitis and 4 other intermediate uveitides. METHODS: Cases of intermediate uveitides were collected in an informatics-designed preliminary database, and a final database was constructed of cases achieving supermajority agreement on the diagnosis, using formal consensus techniques. Cases were split into a training set and a validation set. Machine learning using multinomial logistic regression was used in the training set to determine a parsimonious set of criteria that minimized the misclassification rate among the intermediate uveitides. The resulting criteria were evaluated in the validation set. RESULTS: A total of 589 cases of intermediate uveitides, including 112 cases of multiple sclerosis-associated intermediate uveitis, were evaluated by machine learning. The overall accuracy for intermediate uveitides was 99.8% in the training set and 99.3% in the validation set (95% confidence interval: 96.1-99.9). Key criteria for multiple sclerosis-associated intermediate uveitis included unilateral or bilateral intermediate uveitis and multiple sclerosis diagnosed by the McDonald criteria. Key exclusions included syphilis and sarcoidosis. The misclassification rates for multiple sclerosis-associated intermediate uveitis were 0 % in the training set and 0% in the validation set. CONCLUSIONS: The criteria for multiple sclerosis-associated intermediate uveitis had a low misclassification rate and appeared to perform sufficiently well enough for use in clinical and translational research

    From modular to centralized organization of synchronization in functional areas of the cat cerebral cortex

    Get PDF
    Recent studies have pointed out the importance of transient synchronization between widely distributed neural assemblies to understand conscious perception. These neural assemblies form intricate networks of neurons and synapses whose detailed map for mammals is still unknown and far from our experimental capabilities. Only in a few cases, for example the C. elegans, we know the complete mapping of the neuronal tissue or its mesoscopic level of description provided by cortical areas. Here we study the process of transient and global synchronization using a simple model of phase-coupled oscillators assigned to cortical areas in the cerebral cat cortex. Our results highlight the impact of the topological connectivity in the developing of synchronization, revealing a transition in the synchronization organization that goes from a modular decentralized coherence to a centralized synchronized regime controlled by a few cortical areas forming a Rich-Club connectivity pattern.Comment: 24 pages, 8 figures. Final version published in PLoS On

    Silicon-based spin and charge quantum computation

    Full text link
    Silicon-based quantum-computer architectures have attracted attention because of their promise for scalability and their potential for synergetically utilizing the available resources associated with the existing Si technology infrastructure. Electronic and nuclear spins of shallow donors (e.g. phosphorus) in Si are ideal candidates for qubits in such proposals due to the relatively long spin coherence times. For these spin qubits, donor electron charge manipulation by external gates is a key ingredient for control and read-out of single-qubit operations, while shallow donor exchange gates are frequently invoked to perform two-qubit operations. More recently, charge qubits based on tunnel coupling in P2+_2^+ substitutional molecular ions in Si have also been proposed. We discuss the feasibility of the building blocks involved in shallow donor quantum computation in silicon, taking into account the peculiarities of silicon electronic structure, in particular the six degenerate states at the conduction band edge. We show that quantum interference among these states does not significantly affect operations involving a single donor, but leads to fast oscillations in electron exchange coupling and on tunnel-coupling strength when the donor pair relative position is changed on a lattice-parameter scale. These studies illustrate the considerable potential as well as the tremendous challenges posed by donor spin and charge as candidates for qubits in silicon.Comment: Review paper (invited) - to appear in Annals of the Brazilian Academy of Science

    Scanning-probe spectroscopy of semiconductor donor molecules

    Full text link
    Semiconductor devices continue to press into the nanoscale regime, and new applications have emerged for which the quantum properties of dopant atoms act as the functional part of the device, underscoring the necessity to probe the quantum structure of small numbers of dopant atoms in semiconductors[1-3]. Although dopant properties are well-understood with respect to bulk semiconductors, new questions arise in nanosystems. For example, the quantum energy levels of dopants will be affected by the proximity of nanometer-scale electrodes. Moreover, because shallow donors and acceptors are analogous to hydrogen atoms, experiments on small numbers of dopants have the potential to be a testing ground for fundamental questions of atomic and molecular physics, such as the maximum negative ionization of a molecule with a given number of positive ions[4,5]. Electron tunneling spectroscopy through isolated dopants has been observed in transport studies[6,7]. In addition, Geim and coworkers identified resonances due to two closely spaced donors, effectively forming donor molecules[8]. Here we present capacitance spectroscopy measurements of silicon donors in a gallium-arsenide heterostructure using a scanning probe technique[9,10]. In contrast to the work of Geim et al., our data show discernible peaks attributed to successive electrons entering the molecules. Hence this work represents the first addition spectrum measurement of dopant molecules. More generally, to the best of our knowledge, this study is the first example of single-electron capacitance spectroscopy performed directly with a scanning probe tip[9].Comment: In press, Nature Physics. Original manuscript posted here; 16 pages, 3 figures, 5 supplementary figure

    Microscopic Polarization in Bilayer Graphene

    Full text link
    Bilayer graphene has drawn significant attention due to the opening of a band gap in its low energy electronic spectrum, which offers a promising route to electronic applications. The gap can be either tunable through an external electric field or spontaneously formed through an interaction-induced symmetry breaking. Our scanning tunneling measurements reveal the microscopic nature of the bilayer gap to be very different from what is observed in previous macroscopic measurements or expected from current theoretical models. The potential difference between the layers, which is proportional to charge imbalance and determines the gap value, shows strong dependence on the disorder potential, varying spatially in both magnitude and sign on a microscopic level. Furthermore, the gap does not vanish at small charge densities. Additional interaction-induced effects are observed in a magnetic field with the opening of a subgap when the zero orbital Landau level is placed at the Fermi energy
    corecore