40 research outputs found

    Complementing the Cancer-Immunity Cycle

    Get PDF
    Reactivation of cytotoxic CD8+ T-cell responses has set a new direction for cancer immunotherapy. Neutralizing antibodies targeting immune checkpoint programmed cell death protein 1 (PD-1) or its ligand (PD-L1) have been particularly successful for tumor types with limited therapeutic options such as melanoma and lung cancer. However, reactivation of T cells is only one step toward tumor elimination, and a substantial fraction of patients fails to respond to these therapies. In this context, combination therapies targeting more than one of the steps of the cancer-immune cycle may provide significant benefits. To find the best combinations, it is of upmost importance to understand the interplay between cancer cells and all the components of the immune response. This review focuses on the elements of the complement system that come into play in the cancer-immunity cycle. The complement system, an essential part of innate immunity, has emerged as a major regulator of cancer immunity. Complement effectors such as C1q, anaphylatoxins C3a and C5a, and their receptors C3aR and C5aR1, have been associated with tolerogenic cell death and inhibition of antitumor T-cell responses through the recruitment and/or activation of immunosuppressive cell subpopulations such as myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), or M2 tumor-associated macrophages (TAMs). Evidence is provided to support the idea that complement blocks many of the effector routes associated with the cancer-immunity cycle, providing the rationale for new therapeutic combinations aimed to enhance the antitumor efficacy of anti-PD-1/PD-L1 checkpoint inhibitors

    Complementing the cancer-immunity cycle

    Get PDF
    Reactivation of cytotoxic CD8+ T-cell responses has set a new direction for cancer immunotherapy. Neutralizing antibodies targeting immune checkpoint programmed cell death protein 1 (PD-1) or its ligand (PD-L1) have been particularly successful for tumor types with limited therapeutic options such as melanoma and lung cancer. However, reactivation of T cells is only one step toward tumor elimination, and a substantial fraction of patients fails to respond to these therapies. In this context, combination therapies targeting more than one of the steps of the cancer-immune cycle may provide significant benefits. To find the best combinations, it is of upmost importance to understand the interplay between cancer cells and all the components of the immune response. This review focuses on the elements of the complement system that come into play in the cancer-immunity cycle. The complement system, an essential part of innate immunity, has emerged as a major regulator of cancer immunity. Complement effectors such as C1q, anaphylatoxins C3a and C5a, and their receptors C3aR and C5aR1, have been associated with tolerogenic cell death and inhibition of antitumor T-cell responses through the recruitment and/or activation of immunosuppressive cell subpopulations such as myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), or M2 tumor-associated macrophages (TAMs). Evidence is provided to support the idea that complement blocks many of the effector routes associated with the cancer-immunity cycle, providing the rationale for new therapeutic combinations aimed to enhance the antitumor efficacy of anti-PD-1/PD-L1 checkpoint inhibitors

    Expression of complement factor H by lung cancer cells: effects on the activation of the alternative pathway of complement

    Get PDF
    The complement system is important in immunosurveillance against tumors. However, malignant cells are usually resistant to complement-mediated lysis. In this study, we examine the expression of factor H, an inhibitor of complement activation, and factor H-like protein 1 (FHL-1), its alternatively spliced form, in lung cancer. We also evaluate the potential effect of factor H/FHL-1 in the protection of lung cancer cells against the activation of the complement cascade. By Northern blot analysis we demonstrate a high expression of factor H and FHL-1 in most non-small cell lung cancer cell lines, although neuroendocrine pulmonary tumors (small cell lung carcinoma and carcinoid cell lines) had undetectable levels. Western blot analysis of conditioned medium showed the active secretion of factor H and FHL-1 by cells that were positive by Northern blot. Expression of factor H/FHL-1 mRNA was also shown in a series of non-small cell lung cancer biopsies by in situ hybridization. Interestingly, many cultured lung cancer cells were able to bind fluorescence-labeled factor H to their surfaces. Deposition of C3 fragments from normal human serum on H1264, a lung adenocarcinoma cell line, was more efficient when factor H/FHL-1 activity was blocked by specific antibodies. Blocking factor H/FHL-1 activity also enhanced the release of anaphylatoxin C5a and moderately increased the susceptibility of these cells to complement-mediated cytotoxicity. In summary, we demonstrate the expression of factor H and FHL-1 by some lung cancer cells and analyze the contribution of these proteins to the protection against complement activation

    Elevated circulating metalloproteinase 7 predicts recurrent cardiovascular events in patients with carotid stenosis: a prospective cohort study

    Get PDF
    Background: Major adverse cardiovascular events are the main cause of morbidity and mortality over the long term in patients undergoing carotid endarterectomy. There are few reports assessing the prognostic value of markers of inflammation in relation to the risk of cardiovascular disease after carotid endarterectomy. Here, we aimed to determine whether matrix metalloproteinases (MMP-1, MMP-2, MMP-7, MMP-9 and MMP-10), tissue inhibitor of MMPs (TIMP-1) and in vivo inflammation studied by 18F-FDG-PET/CT predict recurrent cardiovascular events in patients with carotid stenosis who underwent endarterectomy. Methods: This prospective cohort study was carried out on 31 consecutive patients with symptomatic (23/31) or asymptomatic (8/31) severe (> 70%) carotid stenosis who were scheduled for carotid endarterectomy between July 2013 and March 2016. In addition, 26 healthy controls were included in the study. Plasma and serum samples were collected 2 days prior to surgery and tested for MMP-1, MMP-2, MMP-7, MMP-9, MMP-10, TIMP-1, high-density lipoprotein, low-density lipoprotein, high-sensitivity C-reactive protein and erythrocyte sedimentation rate. 18F-FDGPET/CT focusing on several territories’ vascular wall metabolism was performed on 29 of the patients because of no presurgical availability in 2 symptomatic patients. Histological and immunohistochemical studies were performed with antibodies targeting MMP-10, MMP-9, TIMP-1 and CD68. Results: The patients with carotid stenosis had significantly more circulating MMP-1, MMP-7 and MMP-10 than the healthy controls. Intraplaque TIMP-1 was correlated with its plasma level (r = 0.42 P = .02) and with 18F-FDG uptake (r = 0.38 P = .05). We did not find any correlation between circulating MMPs and in vivo carotid plaque metabolism assessed by 18F-FDG-PET. After a median follow-up of 1077 days, 4 cerebrovascular, 7 cardiovascular and 11 peripheral vascular events requiring hospitalization were registered. Circulating MMP-7 was capable of predicting events over and above the traditional risk factors (HR = 1.15 P = .006). When the model was associated with the variables of interest, the risk predicted by 18F-FDG-PET was not significant. Conclusions: Circulating MMP-7 may represent a novel marker for recurrent cardiovascular events in patients with moderate to severe carotid stenosis. MMP-7 may reflect the atherosclerotic burden but not plaque inflammation in this specific vascular territory

    Investigation of Complement Activation Product C4d as a Diagnostic and Prognostic Biomarker for Lung Cancer

    Full text link
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3776260/[EN] Background There is a medical need for diagnostic biomarkers in lung cancer. We evaluated the diagnostic performance of complement activation fragments. Methods We assessed complement activation in four bronchial epithelial and seven lung cancer cell lines. C4d, a degradation product of complement activation, was determined in 90 primary lung tumors; bronchoalveolar lavage supernatants from patients with lung cancer (n = 50) and nonmalignant respiratory diseases (n = 22); and plasma samples from advanced (n = 50) and early lung cancer patients (n = 84) subjects with inflammatory lung diseases (n = 133), and asymptomatic individuals enrolled in a lung cancer computed tomography screening program (n = 190). Two-sided P values were calculated by Mann-Whitney U test. Results Lung cancer cells activated the classical complement pathway mediated by C1q binding that was inhibited by phosphomonoesters. Survival was decreased in patients with high C4d deposition in tumors (hazard ratio [HR] = 3.06; 95% confidence interval [CI] = 1.18 to 7.91). C4d levels were increased in bronchoalveolar lavage fluid from lung cancer patients compared with patients with nonmalignant respiratory diseases (0.61 +/- 0.87 vs 0.16 +/- 0.11 mu g/mL; P < .001). C4d levels in plasma samples from lung cancer patients at both advanced and early stages were also increased compared with control subjects (4.13 +/- 2.02 vs 1.86 +/- 0.95 mu g/mL, P < 0.001; 3.18 +/- 3.20 vs 1.13 +/- 0.69 mu g/mL, P < .001, respectively). C4d plasma levels were associated with shorter survival in patients at advanced (HR = 1.59; 95% CI = 0.97 to 2.60) and early stages (HR = 5.57; 95% CI = 1.60 to 19.39). Plasma C4d levels were reduced after surgical removal of lung tumors (P < .001) and were associated with increased lung cancer risk in asymptomatic individuals with (n = 32) or without lung cancer (n = 158) (odds ratio = 4.38; 95% CI = 1.61 to 11.93). Conclusions Complement fragment C4d may serve as a biomarker for early diagnosis and prognosis of lung cancer.This work was supported by UTE project CIMA; the Spanish Government (grant numbers ISCIII-RTICC RD06/0020/0066, RD06/0020/1024, RD12/0036/0025, RD12/0036/0040, RD12/0036/0062, PI08/0923, PI10/01652, PI10/00166, and PI11/00618); the European Regional Development Fund; the European Community’s Seventh Framework Programme (HEALTH-F2-2010-258677- CURELUNG); and the Early Detection Research Network from the National Cancer Institute (grant number U01 CA152662). This work was supported (in part) by a grant (RD12/0036/XXXX) from Red Temática de Investigación Cooperativa en Cáncer, Instituto de Salud Carlos III, Spanish Ministry of Economy and Competitiveness & European Regional Development Fund “Una manera de hacer Europa”.Jantus Lewintre, E. (2013). Investigation of Complement Activation Product C4d as a Diagnostic and Prognostic Biomarker for Lung Cancer. JNCI: Journal of the National Cancer Institute. 105:1385-1393. https://doi.org/10.1093/jnci/djt205S1385139310

    A model based on the quantification of complement C4c, CYFRA 21-1 and CRP exhibits high specificity for the early diagnosis of lung cancer

    Get PDF
    Lung cancer screening detects early-stage cancers, but also a large number of benign nodules. Molecular markers can help in the lung cancer screening process by refining inclusion criteria or guiding the management of indeterminate pulmonary nodules. In this study, we developed a diagnostic model based on the quantification in plasma of complement-derived fragment C4c, cytokeratin fragment 21-1 (CYFRA 21-1) and C-reactive protein (CRP). The model was first validated in two independent cohorts, and showed a good diagnostic performance across a range of lung tumor types, emphasizing its high specificity and positive predictive value. We next tested its utility in two clinically relevant contexts: assessment of lung cancer risk and nodule malignancy. The scores derived from the model were associated with a significantly higher risk of having lung cancer in asymptomatic individuals enrolled in a computed tomography (CT)-screening program (OR = 1.89; 95% CI = 1.20–2.97). Our model also served to discriminate between benign and malignant pulmonary nodules (AUC: 0.86; 95% CI = 0.80–0.92) with very good specificity (92%). Moreover, the model performed better in combination with clinical factors, and may be used to reclassify patients with intermediate-risk indeterminate pulmonary nodules into patients who require a more aggressive work-up. In conclusion, we propose a new diagnostic biomarker panel that may dictate which incidental or screening-detected pulmonary nodules require a more active work-up

    YES1 drives lung cancer growth and progression and predicts sensitivity to dasatinib

    Get PDF
    Rationale: The characterization of new genetic alterations is essential to assign effective personalized therapies in non–small cell lung cancer (NSCLC). Furthermore, finding stratification biomarkers is essential for successful personalized therapies. Molecular alterations of YES1, a member of the SRC (proto-oncogene tyrosine-protein kinase Src) family kinases (SFKs), can be found in a significant subset of patients with lung cancer. Objectives: To evaluate YES1 (v-YES-1 Yamaguchi sarcoma viral oncogene homolog 1) genetic alteration as a therapeutic target and predictive biomarker of response to dasatinib in NSCLC. Methods: Functional significance was evaluated by in vivo models of NSCLC and metastasis and patient-derived xenografts. The efficacy of pharmacological and genetic (CRISPR [clustered regularly interspaced short palindromic repeats]/Cas9 [CRISPR-associated protein 9]) YES1 abrogation was also evaluated. In vitro functional assays for signaling, survival, and invasion were also performed. The association between YES1 alterations and prognosis was evaluated in clinical samples. Measurements and Main Results: We demonstrated that YES1 is essential for NSCLC carcinogenesis. Furthermore, YES1 overexpression induced metastatic spread in preclinical in vivo models. YES1 genetic depletion by CRISPR/Cas9 technology significantly reduced tumor growth and metastasis. YES1 effects were mainly driven by mTOR (mammalian target of rapamycin) signaling. Interestingly, cell lines and patient-derived xenograft models with YES1 gene amplifications presented a high sensitivity to dasatinib, an SFK inhibitor, pointing out YES1 status as a stratification biomarker for dasatinib response. Moreover, high YES1 protein expression was an independent predictor for poor prognosis in patients with lung cancer. Conclusions: YES1 is a promising therapeutic target in lung cancer. Our results provide support for the clinical evaluation of dasatinib treatment in a selected subset of patients using YES1 status as predictive biomarker for therapy

    Elevated levels of the complement activation product c4d in bronchial fluids for the diagnosis of lung cancer

    Get PDF
    Molecular markers in bronchial fluids may contribute to the diagnosis of lung cancer. We previously observed a significant increase of C4d-containing complement degradation fragments in bronchoalveolar lavage (BAL) supernatants from lung cancer patients in a cohort of 50 cases and 22 controls (CUN cohort). The present study was designed to determine the diagnostic performance of these complement fragments (hereinafter jointly referred as C4d) in bronchial fluids. C4d levels were determined in BAL supernatants from two independent cohorts: the CU cohort (25 cases and 26 controls) and the HUVR cohort (60 cases and 98 controls). A series of spontaneous sputum samples from 68 patients with lung cancer and 10 controls was also used (LCCCIO cohort). Total protein content, complement C4, complement C5a, and CYFRA 21-1 were also measured in all cohorts. C4d levels were significantly increased in BAL samples from lung cancer patients. The area under the ROC curve was 0.82 (95%CI = 0.71-0.94) and 0.67 (95%CI = 0.58-0.76) for the CU and HUVR cohorts, respectively. In addition, unlike the other markers, C4d levels in BAL samples were highly consistent across the CUN, CU and HUVR cohorts. Interestingly, C4d test markedly increased the sensitivity of bronchoscopy in the two cohorts in which cytological data were available (CUN and HUVR cohorts). Finally, in the LCCCIO cohort, C4d levels were higher in sputum supernatants from patients with lung cancer (area under the ROC curve: 0.7; 95%CI = 0.56-0.83). In conclusion, C4d is consistently elevated in bronchial fluids from lung cancer patients and may be used to improve the diagnosis of the disease

    Complement in metastasis: a comp in the camp

    Get PDF
    The complement system represents a pillar of the innate immune response. This system, critical for host defense against pathogens, encompasses more than 50 soluble, and membrane-bound proteins. Emerging evidence underscores its clinical relevance in tumor progression and its role in metastasis, one of the hallmarks of cancer. The multistep process of metastasis entails the acquisition of advantageous functions required for the formation of secondary tumors. Thus, targeting components of the complement system could impact not only on tumor initiation but also on several crucial steps along tumor dissemination. This novel vulnerability could be concomitantly exploited with current strategies overcoming tumor-mediated immunosuppression to provide a substantial clinical benefit in the treatment of metastatic disease. In this review, we offer a tour d’horizon on recent advances in this area and their prospective potential for cancer treatment

    Potenciación de la Inmunoterapia frente al cáncer de pulmón mediante la modulación del microambiente tumoral

    No full text
    Complement C5a has been proposed as a major regulator of myeloid-derived suppressor cells (MDSCs). In this thesis, we aimed to evaluate the mechanisms by which the C5a/C5aR1 axis endows MDSCs with properties that facilitate tumor growth and metastatic spread. Local C5a production in primary tumors seems to promote the recruitment of MDSCs, which results in a decrease in the frequency and activity of CD8 T cytotoxic lymphocytes. For this reason, we hypothesized that combined inhibition of C5a/C5aR1 and programmed cell death protein 1 (PD-1) signaling may have a synergistic antitumor effect. Using syngeneic models of lung cancer, we demonstrate that the combined blockade of C5a (AON-D21) and PD-1 (RMP1-14) markedly reduced tumor growth and led to prolonged survival. This effect was accompanied by a negative association between the frequency of CD8 T cells and MDSCs within tumors, which may result in a more complete reversal of CD8 T-cell exhaustion. This study provides support for the clinical evaluation of anti PD-1 and anti-C5a drugs as a novel combination therapeutic strategy for lung cancer. We also characterized the role of C5a on the two distinct subsets of MDSCs: polymorphonuclear MDSCs (PMN-MDSCs) and monocytic MDSCs (MON-MDSCs). Using ex vivo generated MDSCs and antagonists for C5a (AON-D21) and C5aR1 (PMX53), we demonstrate that C5a promoted an integrin-independent amoeboid mode of migration on PMN-MDSCs, while had no apparent effect on MON-MDSCs. In association with the effect on PMN-MDSC migration, C5a downregulated the expression of β1 and β3 integrins (mediators of cell-matrix adhesion) and upregulated the expression of the mediator of leukocyte extravasation CD11b. Moreover, stimulation of PMN-MDSCs with C5a favored the invasion of cancer cells via a process dependent on the extrusion of neutrophil extracellular traps (NETs). C5a/C5aR1 blockade or NET inhibition reduced the number of circulating tumor cells (CTCs) and the metastatic burden in a lung metastasis model. In support of the relevance of these findings obtained in mice, C5a was able to stimulate invasion and NETosis of PMN-MDSCs obtained from lung cancer patients. Moreover, myeloperoxidase (MPO)-DNA complexes, markers of NETosis, were elevated in lung cancer patients and correlated with C5a levels. We conclude that blockade of C5a results in a substantial improvement in the efficacy of anti PD-1 antibodies against lung cancer growth, and that C5a induces the formation of NETs by MDSCs to facilitate the dissemination, colonization and metastasis of cancer cells
    corecore