49 research outputs found

    Estimating parameters of binary black holes from gravitational-wave observations of their inspiral, merger and ringdown

    Get PDF
    We characterize the expected statistical errors with which the parameters of black-hole binaries can be measured from gravitational-wave (GW) observations of their inspiral, merger and ringdown by a network of second-generation ground-based GW observatories. We simulate a population of black-hole binaries with uniform distribution of component masses in the interval (3,80) M⊙(3,80)~M_\odot, distributed uniformly in comoving volume, with isotropic orientations. From signals producing signal-to-noise ratio ≥5\geq 5 in at least two detectors, we estimate the posterior distributions of the binary parameters using the Bayesian parameter estimation code LALInference. The GW signals will be redshifted due to the cosmological expansion and we measure only the "redshifted" masses. By assuming a cosmology, it is possible to estimate the gravitational masses by inferring the redshift from the measured posterior of the luminosity distance. We find that the measurement of the gravitational masses will be in general dominated by the error in measuring the luminosity distance. In spite of this, the component masses of more than 50%50\% of the population can be measured with accuracy better than ∼25%\sim 25\% using the Advanced LIGO-Virgo network. Additionally, the mass of the final black hole can be measured with median accuracy ∼18%\sim 18\%. Spin of the final black hole can be measured with median accuracy ∼5% (17%)\sim 5\% ~(17\%) for binaries with non-spinning (aligned-spin) black holes. Additional detectors in Japan and India significantly improve the accuracy of sky localization, and moderately improve the estimation of luminosity distance, and hence, that of all mass parameters. We discuss the implication of these results on the observational evidence of intermediate-mass black holes and the estimation of cosmological parameters using GW observations.Comment: 9 pages, 5 figure

    Accurate inspiral-merger-ringdown gravitational waveforms for non-spinning black-hole binaries including the effect of subdominant modes

    Get PDF
    We present an analytical waveform family describing gravitational waves (GWs) from the inspiral, merger and ringdown of non-spinning black-hole binaries including the effect of several non-quadrupole modes [(ℓ=2,m=±1),(ℓ=3,m=±3),(ℓ=4,m=±4)\ell = 2, m = \pm 1), (\ell = 3, m = \pm 3), (\ell = 4, m = \pm 4) apart from (ℓ=2,m=±2)(\ell = 2, m=\pm2)]. We first construct spin-weighted spherical harmonics modes of hybrid waveforms by matching numerical-relativity simulations (with mass ratio 1−101-10) describing the late inspiral, merger and ringdown of the binary with post-Newtonian/effective-one-body waveforms describing the early inspiral. An analytical waveform family is constructed in frequency domain by modeling the Fourier transform of the hybrid waveforms making use of analytical functions inspired by perturbative calculations. The resulting highly accurate, ready-to-use waveforms are highly faithful (unfaithfulness ≃10−4−10−2\simeq 10^{-4} - 10^{-2}) for observation of GWs from non-spinning black hole binaries and are extremely inexpensive to generate.Comment: 10 pages, 5 figure

    Listening to black holes

    Get PDF
    The recent discovery of gravitational waves not only confirms Albert Einstein’s century old prediction, but also opens up a completely new way of observing the Universe. This article describes the exciting story of this discovery, what went behind it, and what lies ahea
    corecore