7 research outputs found

    Introduction. The School: Its Genesis, Development and Significance

    Get PDF
    The Introduction outlines, in a concise way, the history of the Lvov-Warsaw School – a most unique Polish school of worldwide renown, which pioneered trends combining philosophy, logic, mathematics and language. The author accepts that the beginnings of the School fall on the year 1895, when its founder Kazimierz Twardowski, a disciple of Franz Brentano, came to Lvov on his mission to organize a scientific circle. Soon, among the characteristic features of the School was its serious approach towards philosophical studies and teaching of philosophy, dealing with philosophy and propagation of it as an intellectual and moral mission, passion for clarity and precision, as well as exchange of thoughts, and cooperation with representatives of other disciplines.The genesis is followed by a chronological presentation of the development of the School in the successive years. The author mentions all the key representatives of the School (among others, Ajdukiewicz, Lesniewski, Łukasiewicz,Tarski), accompanying the names with short descriptions of their achievements. The development of the School after Poland’s regaining independence in 1918 meant part of the members moving from Lvov to Warsaw, thus providing the other segment to the name – Warsaw School of Logic. The author dwells longer on the activity of the School during the Interwar period – the time of its greatest prosperity, which ended along with the outbreak of World War 2. Attempts made after the War to recreate the spirit of the School are also outlined and the names of followers are listed accordingly. The presentation ends with some concluding remarks on the contribution of the School to contemporary developments in the fields of philosophy, mathematical logic or computer science in Poland

    Assessment of recycled concrete aggregate properties required for structural concretes

    Get PDF
    Assessment of recycled aggregate concrete (RAC) properties by laboratory tests is still required due to lack of precise guidelines and with taking into account slightly different behaviour of such concretes in comparison with natural aggregate concretes (NAC). It is especially important when recycled concrete aggregates are used for the structural elements. In this paper, the following rules for the whole concrete recycling cycle were defined: (1) rules for examination of original concretes selected for recycling and (2) rules for aggregate preparation and their fractionize as well as design rules for recycled aggregate concrete mixtures (including required tests of recycled aggregates and concrete properties). Requirements towards recycled aggregate concrete formulated in this paper are based on the long term experience and research works on the RAC which were held by A. Ajdukiewicz and A. Kliszczewicz in the Department of Structural Engineering of the Silesian University of Technology, practically since 1995

    Testing and Repair of Concrete Silos

    No full text

    Application of digital image correlation system for analysis of local plastic instabilities of perforated thin-walled bars

    No full text
    In the presented paper the local instabilities occurring in compression test of perforated thin-walled bars of low slenderness are observed using digital image correlation system ARAMIS. The tested samples slenderness is so low, that from theoretical point of view we are dealing with compression tests of some perforated shells. The samples are made from typical low carbon steel, which has to be treated as elasto-plastic material. Because of that, the final geometry of the sample (after unloading) is also analysed giving a good data for calibration of the theory of elasto-plasticity for large deformations. In analysed cases the total strain values are not exceptionally large, while local rotation (and permanent deformations) have significant values

    Verification of Plasticity Theory with Isotropic Hardening and Additive Decomposition of Left Deformation Tensor Using Digital Image Correlation System

    No full text
    abstractEN: The development of measurement methods, and in particular digital image correlation (DIC) systems, which are designed to measure of entire displacements and deformations fields, opens up new areas of research. In general, the materials constitutive relations are formulated in such a way that material parameters could be determined with relatively simple experimental tests carried out on samples with uniform (approximately) stress and strain fields. Then it is possible to apply them to complex boundary value problems formulated e.g. in the small or large deformation theories. The application of DIC allows to verify the accuracy of their predictions by comparing the results of the experiment with solutions to boundary value problems obtained using the finite element method (FEM).score: 5collation: 61-6

    Estimation of Post-Cracking Dissipation Capabilities of Fiber Reinforced Concretes in Three Point Bending Test Monitored with Application of Digital Image Correlation System

    No full text
    Concretes with dispersed reinforcement are increasingly used in structural engineering. The basic source of knowledge on their application and design are the Model-Code 2010 guidelines. These guidelines, however, apply mainly to steel rebar reinforcement and are not fully sufficient in the analysis of the load-bearing capacity of elements made of concrete with dispersed reinforcement. Therefore, scientific research in this field is carried out continuously. The main goal of our work is to provide experimental data for the calibration of constitutive models of the cracking mechanics of concrete with reinforcement in the form of steel and polypropylene fibers. This article shows the possibility of using the digital image correlation system (DIC) to achieve this goal. The method of sample preparation and the method of conducting the tests were modeled on the recommendations contained in the PN-EN 14651: 2007 standard. The tests were carried out on prismatic elements with a notch loaded in a three-point bending setup. The results of standard strength tests are presented in the form of column graphs and tables. As an extension, the results of calculations of energy dissipated in fracture process are given. Moreover, the experimentally obtained graphs of the relationship between the force, displacement and crack opening were presented, which were supplemented with the images of crack development obtained with the use of DIC. The development of the crack net is characterized not only qualitatively but also quantitatively as a function of deflection or crack mouth opening displacement. Conclusions concerning the adopted research methodology and the tested materials are presented at the end of the article
    corecore