15 research outputs found

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security

    Sensing methods for stress biomarker detection in human saliva: a new frontier for wearable electronics and biosensing

    No full text
    The human stress response triggers a complex array of physiological, psychological, and biochemical reactions, involving neuroendocrine pathways such as the sympathetic adrenomedullary axis and hypothalamic-pituitary-adrenal axis. Prolonged experience of stress can have adverse effects on overall cognitive and physical well-being, making the routine monitoring of everyday stress highly desired for the delivery of personalised health management solutions. Saliva, as a diagnostic fluid, has garnered considerable attention in this regard due to its non-invasiveness, ease of collection and high compliance among diverse populations. Salivary biomarkers, including cortisol, salivary a-amylase, chromogranin A, brain-derived neurotrophic factor, and immunoglobulin A, are responsive to acute and/or chronic stressors, and thus, are prerequisite biomarkers in stress-related research. A number of sensing technologies are available for stress biomarker monitoring in saliva and other fluids. Enzyme-linked immunosorbent assays, colorimetric techniques, surface plasmon resonance sensing, and molecular imprinted polymers offer sensitive and selective cortisol detection in saliva. The integration of aptamers with electrochemiluminescence biosensing provides a label-free and cost-effective approach to biomarker detection. Wearable sensors that couple on-body sampling with edge computing for real time analytics open up new avenues for ambulatory monitoring and predictive diagnostics. The development of sensitive and reliable, saliva-based biosensing technologies in form of smart dentures and braces, holds the potential to revolutionize stress research with potential to provide personalized stress management solutions for health management in the future.</p

    Efficacy of stem cell in improvement of left ventricular function in acute myocardial infarction - MI3 Trial

    Get PDF
    Background and objectives: Acute myocardial infarction (AMI) is characterized by irreparable and irreversible loss of cardiac myocytes. Despite major advances in the management of AMI, a large number of patients are left with reduced left ventricular ejection fraction (LVEF), which is a major determinant of short and long term morbidity and mortality. A review of 33 randomized control trials has shown varying improvement in left ventricular (LV) function in patients receiving stem cells compared to standard medical therapy. Most trials had small sample size and were underpowered. This phase III prospective, open labelled, randomized multicenteric trial was undertaken to evaluate the efficacy in improving the LVEF over a period of six months, after injecting a predefined dose of 5-10 Χ 10 [8] autologous mononuclear cells (MNC) by intra-coronary route, in patients, one to three weeks post ST elevation AMI, in addition to the standard medical therapy. Methods: In this phase III prospective, multicentric trial 250 patients with AMI were included and randomized into stem cell therapy (SCT) and non SCT groups. All patients were followed up for six months. Patients with AMI having left ventricular ejection fraction (LVEF) of 20-50 per cent were included and were randomized to receive intracoronary stem cell infusion after successfully completing percutaneous coronary intervention (PCI). Results: On intention-to-treat analysis the infusion of MNCs had no positive impact on LVEF improvement of ≥ 5 per cent. The improvement in LVEF after six months was 5.17 ± 8.90 per cent in non SCT group and 4.82 ± 10.32 per cent in SCT group. The adverse effects were comparable in both the groups. On post hoc analysis it was noted that the cell dose had a positive impact when infused in the dose of ≥ 5 X 10 [8] (n=71). This benefit was noted upto three weeks post AMI. There were 38 trial deviates in the SCT group which was a limitation of the study. Interpretation and conclusions:Infusion of stem cells was found to have no benefit in ST elevation AMI. However, the procedure was safe. A possible benefit was seen when the predefined cell dose was administered which was noted upto three weeks post AMI, but this was not significant and needs confirmation by larger trials

    Abstracts of National Conference on Biological, Biochemical, Biomedical, Bioenergy, and Environmental Biotechnology

    No full text
    This book contains the abstracts of the papers presented at the National Conference on Biological, Biochemical, Biomedical, Bioenergy, and Environmental Biotechnology (NCB4EBT-2021) Organized by the Department of Biotechnology, National Institute of Technology Warangal, India held on 29–30 January 2021. This conference is the first of its kind organized by NIT-W which covered an array of interesting topics in biotechnology. This makes it a bit special as it brings together researchers from different disciplines of biotechnology, which in turn will also open new research and cooperation fields for them. Conference Title: National Conference on Biological, Biochemical, Biomedical, Bioenergy, and Environmental BiotechnologyConference Acronym: NCB4EBT-2021Conference Date: 29–30 January 2021Conference Location: Online (Virtual Mode)Conference Organizer: Department of Biotechnology, National Institute of Technology Warangal, Indi

    A Snapshot of the Emerging Tomato Genome Sequence

    Get PDF
    The genome of tomato (Solanum lycopersicum L.) is being sequenced by an international consortium of 10 countries (Korea, China, the United Kingdom, India, the Netherlands, France, Japan, Spain, Italy, and the United States) as part of the larger \u201cInternational Solanaceae Genome Project (SOL): Systems Approach to Diversity and Adaptation\u201d initiative. The tomato genome sequencing project uses an ordered bacterial artificial chromosome (BAC) approach to generate a high-quality tomato euchromatic genome sequence for use as a reference genome for the Solanaceae and euasterids. Sequence is deposited at GenBank and at the SOL Genomics Network (SGN). Currently, there are around 1000 BACs finished or in progress, representing more than a third of the projected euchromatic portion of the genome. An annotation effort is also underway by the International Tomato Annotation Group. The expected number of genes in the euchromatin is 3c40,000, based on an estimate from a preliminary annotation of 11% of finished sequence. Here, we present this first snapshot of the emerging tomato genome and its annotation, a short comparison with potato (Solanum tuberosum L.) sequence data, and the tools available for the researchers to exploit this new resource are also presented. In the future, whole-genome shotgun techniques will be combined with the BAC-by-BAC approach to cover the entire tomato genome. The high-quality reference euchromatic tomato sequence is expected to be near completion by 2010

    Indian consensus on gastroesophageal reflux disease in adults: A position statement of the Indian Society of Gastroenterology

    No full text
    corecore