205 research outputs found

    Span Morphing Using the Compliant Spar

    Full text link
    This paper develops and models the Compliant Spar concept that allows the wing span to be varied to provide roll control and enhance the operational performance for a medium altitude long endurance (MALE) UAV. The wing semi-span is split into morphing partitions and the concept maybe incorporated in each partition; however only the tip partition is considered here. The Compliant Spar is made of compliant joints arrange in series to allow the partition to be flexible under axial (spanwise) loads but at the same time stiff enough to resist bending loads. Each compliant joint consists of two concentric overlapping AL 2024-T3 tubes joined together using elastomeric material. Under axial (spanwise) loading, the elastomeric material deforms in shear allowing the overlapping distance between the tubes to vary and hence the length (in the spanwise direction) of the joint/spar to vary. High fidelity modelling of the concept is performed. Then, structural optimisation studies are performed to minimise the axial stiffness and the structural mass of the concept for various design constraints. The flexible skin and actuation system to be used are also addressed

    Expanding the Grading of Recommendations Assessment, Development, and Evaluation (Ex-GRADE) for Evidence-Based Clinical Recommendations: Validation Study

    Get PDF
    Clinicians use general practice guidelines as a source of support for their intervention, but how much confidence should they place on these recommendations? How much confidence should patients place on these recommendations? Various instruments are available to assess the quality of evidence of research, such as the revised Wong scale (R-Wong) which examines the quality of research design, methodology and data analysis, and the revision of the assessment of multiple systematic reviews (R-AMSTAR), which examines the quality of systematic reviews

    Electromagnetic backgrounds and potassium-42 activity in the DEAP-3600 dark matter detector

    Get PDF
    See full article for abstrac

    First direct detection constraints on planck-scale mass dark matter with multiple-scatter signatures using the DEAP-3600 detector

    Get PDF
    Dark matter with Planck-scale mass (?1019 GeV/c2) arises in well-motivated theories and could be produced by several cosmological mechanisms. A search for multiscatter signals from supermassive dark matter was performed with a blind analysis of data collected over a 813 d live time with DEAP-3600, a 3.3 t single-phase liquid argon-based detector at SNOLAB. No candidate signals were observed, leading to the first direct detection constraints on Planck-scale mass dark matter. Leading limits constrain dark matter masses between 8.3×106 and 1.2×1019 GeV/c2, and Ar40-scattering cross sections between 1.0×10-23 and 2.4×10-18 cm2. These results are interpreted as constraints on composite dark matter models with two different nucleon-to-nuclear cross section scalings

    Biophysical Property and Broad Anti-HIV Activity of Albuvirtide, a 3-Maleimimidopropionic Acid-Modified Peptide Fusion Inhibitor

    Get PDF
    Albuvirtide (ABT) is a 3-maleimimidopropionic acid (MPA)-modified peptide HIV fusion inhibitor that can irreversibly conjugate to serum albumin. Previous studies demonstrated its in vivo long half-life and potent anti-HIV activity. Here, we focused to characterize its biophysical properties and evaluate its antiviral spectrum. In contrast to T20 (Enfuvirtide, Fuzeon), ABT was able to form a stable α-helical conformation with the target sequence and block the fusion-active six-helix bundle (6-HB) formation in a dominant-negative manner. It efficiently inhibited HIV-1 Env-mediated cell membrane fusion and virus entry. A large panel of 42 HIV-1 pseudoviruses with different genotypes were constructed and used for the antiviral evaluation. The results showed that ABT had potent inhibitory activity against the subtypes A, B and C that predominate the worldwide AIDS epidemics, and subtype B′, CRF07_BC and CRF01_AE recombinants that are currently circulating in China. Furthermore, ABT was also highly effective against HIV-1 variants resistant to T20. Taken together, our data indicate that the chemically modified peptide ABT can serve as an ideal HIV-1 fusion inhibitor

    The liquid-argon scintillation pulseshape in DEAP-3600

    Get PDF
    DEAP-3600 is a liquid-argon scintillation detector looking for dark matter. Scintillation events in the liquid argon (LAr) are registered by 255 photomultiplier tubes (PMTs), and pulseshape discrimination (PSD) is used to suppress electromagnetic background events. The excellent PSD performance of LAr makes it a viable target for dark matter searches, and the LAr scintillation pulseshape discussed here is the basis of PSD. The observed pulseshape is a combination of LAr scintillation physics with detector effects. We present a model for the pulseshape of electromagnetic background events in the energy region of interest for dark matter searches. The model is composed of (a) LAr scintillation physics, including the so-called intermediate component, (b) the time response of the TPB wavelength shifter, including delayed TPB emission at O(ms) time-scales, and c) PMT response. TPB is the wavelength shifter of choice in most LAr detectors. We find that approximately 10% of the intensity of the wavelength-shifted light is in a long-lived state of TPB. This causes light from an event to spill into subsequent events to an extent not usually accounted for in the design and data analysis of LAr-based detectors

    Search for dark matter with a 231-day exposure of liquid argon using DEAP-3600 at SNOLAB

    Get PDF
    DEAP-3600 is a single-phase liquid argon (LAr) direct-detection dark matter experiment, operating 2 km underground at SNOLAB (Sudbury, Canada). The detector consists of 3279 kg of LAr contained in a spherical acrylic vessel. This paper reports on the analysis of a 758  tonne⋅day exposure taken over a period of 231 live-days during the first year of operation. No candidate signal events are observed in the WIMP-search region of interest, which results in the leading limit on the WIMP-nucleon spin-independent cross section on a LAr target of 3.9×10−45  cm2 (1.5×10−44  cm2) for a 100  GeV/c2 (1  TeV/c2) WIMP mass at 90% C.L. In addition to a detailed background model, this analysis demonstrates the best pulse-shape discrimination in LAr at threshold, employs a Bayesian photoelectron-counting technique to improve the energy resolution and discrimination efficiency, and utilizes two position reconstruction algorithms based on the charge and photon detection time distributions observed in each photomultiplier tube
    corecore