21 research outputs found

    Stable-Isotope Time Series and Precipitation Origin from Firn-Core and Snow Samples, Altai Glaciers, Siberia

    Get PDF
    In the summers of 2001 and 2002, glacio-climatological research was performed at 4110-4120 m a.s.l. on the Belukha snow/firn plateau, Siberian Altai. Hundreds of samples from snow pits and a 21 m snow/firn core were collected to establish the annual/seasonal/monthly depth-accumulation scale, based on stable-isotope records, stratigraphic analyses and meteorological and synoptic data. The fluctuations of water stable-isotope records show well-preserved seasonal variations. The delta(18)O and delta D relationships in precipitation, snow pits and the snow/firn core have the same slope to the covariance as that of the global meteoric water line. The origins of precipitation nourishing the Belukha plateau were determined based on clustering analysis of delta(18)O and d-excess records and examination of synoptic atmospheric patterns. Calibration and validation of the developed clusters occurred at event and monthly timescales with about 15% uncertainty. Two distinct moisture sources were shown: oceanic sources with d-excess \u3c 12 parts per thousand, and the Aral-Caspian closed drainage basin sources with d-excess \u3e 12 parts per thousand. Two-thirds of the annual accumulation was from oceanic precipitation, of which more than half had isotopic ratios corresponding to moisture evaporated over the Atlantic Ocean. Precipitation from the Arctic/Pacific Ocean had the lowest deuterium excess, contributing one-tenth to annual accumulation

    Association Between Atmospheric Circulation Patterns and Firn-Ice Core Records from the Inilchek Glacierized Area, Central Tien Shan, Asia

    Get PDF
    Glacioclimatological research in the central Tien Shan was performed in the summers of 1998 and 1999 on the South Inilchek Glacier at 5100 - 5460 m. A 14.36 m firn-ice core and snow samples were collected and used for stratigraphic, isotopic, and chemical analyses. The firn-ice core and snow records were related to snow pit measurements at an event scale and to meteorological data and synoptic indices of atmospheric circulation at annual and seasonal scales. Linear relationships between the seasonal air temperature and seasonal isotopic composition in accumulated precipitation were established. Changes in the delta(18)O air temperature relationship, in major ion concentration and in the ratios between chemical species, were used to identify different sources of moisture and investigate changes in atmospheric circulation patterns. Precipitation over the central Tien Shan is characterized by the lowest ionic content among the Tien Shan glaciers and indicates its mainly marine origin. In seasons of minimum precipitation, autumn and winter, water vapor was derived from the arid and semiarid regions in central Eurasia and contributed annual maximal solute content to snow accumulation in Tien Shan. The lowest content of major ions was observed in spring and summer layers, which represent maximum seasonal accumulation when moisture originates over the Atlantic Ocean and Mediterranean and Black Seas

    Stable-Isotope and Trace Element Time Series from Fedchenko Glacier (Pamirs) Snow/Firn Cores

    Get PDF
    In summer 2005, two pilot snow/firn cores were obtained at 5365 and 5206 m a.s.l. on Fedchenko glacier, Pamirs, Tajikistan, the world\u27s longest and deepest alpine glacier. The well-defined seasonal layering appearing in stable-isotope and trace element distribution identified the physical links controlling the climate and aerosol concentration signals. Air temperature and humidity/precipitation were the primary determinants of stable-isotope ratios. Most precipitation over the Pamirs originated in the Atlantic. In summer, water vapor was re-evaporated from semi-arid regions in central Eurasia. The semi-arid regions contribute to non-soluble aerosol loading in snow accumulated on Fedchenko glacier. In the Pamir core, concentrations of rare earth elements, major and other elements were less than those in the Tien Shan but greater than those in Antarctica, Greenland, the Alps and the Altai. The content of heavy metals in the Fedchenko cores is 2-14 times lower than in the Altai glaciers. Loess from Afghan-Tajik deposits is the predominant lithogenic material transported to the Pamirs. Trace elements generally showed that aerosol concentration tended to increase on the windward slopes during dust storms but tended to decrease with altitude under clear conditions. The trace element profile documented one of the most severe droughts in the 20th century

    Glacial regime of the highest Tien Shan mountain, Pobeda-Khan Tengry massif

    No full text
    . Major processes controlling the existence of a large subcontinental glacier system were identified on the basis of glaciological, meteorological and isotopic analyses using expeditionary and long-term data. Observations occurred on the southern Inylchek glacier located in the Pobeda - Khan Tengry massif, the largest subcontinental glacier system in the northern periphery of central Asia. More than 1200 glaciers with total area about 4320 km 2 compose the massif. Melt is for the most part caused by radiation and is most intensive during periods of anticyclonic weather with foehn development. The share of solar radiation input to heat balance is more than 90%. Evaporation and condensation are of negligible effect during most times and comprise 7% of heat expenses. Accumulation was associated with cold cyclonic weather. Four ice formation zones were identified, the upper boundary of liquid runoff is at 5200 m, and the recrystallization zone is located above 5900 m. The calculated net ..

    202 Annals of Glaciology 43 2006 Glacier changes in the central and northern Tien Shan during the last 140 years based on surface and remote-sensing data

    No full text
    ABSTRACT. This research presents a precise evaluation of the recession of Akshiirak and Ala Archa glaciers, Tien Shan, central Asia, based on data of geodetic surveys from 1861–69, aerial photographs from 1943, 1963, 1977 and 1981, 1: 25 000 scale topographic maps and SRTM and ASTER data from 2000–03. The Akshiirak glacierized massif in the central Tien Shan contains 178 glaciers covering 371.6 km 2, and the Ala Archa glacier basin in the northern Tien Shan contains 48 glaciers coverin
    corecore