59 research outputs found

    Survival outcomes of stage I colorectal cancer:development and validation of the ACEPLY model using two prospective cohorts

    Get PDF
    BACKGROUND: Approximately 10% of stage I colorectal cancer (CRC) patients experience unfavorable clinical outcomes after surgery. However, little is known about the subset of stage I patients who are predisposed to high risk of recurrence or death. Previous evidence was limited by small sample sizes and lack of validation. METHODS: We aimed to identify early indicators and develop a risk stratification model to inform prognosis of stage I patients by employing two large prospective cohorts. Prognostic factors for stage II tumors, including T stage, number of nodes examined, preoperative carcinoma embryonic antigen (CEA), lymphovascular invasion, perineural invasion (PNI), and tumor grade were investigated in the discovery cohort, and significant findings were further validated in the other cohort. We adopted disease-free survival (DFS) as the primary outcome for maximum statistical power and recurrence rate and overall survival (OS) as secondary outcomes. Hazard ratios (HRs) were estimated from Cox proportional hazard models, which were subsequently utilized to develop a multivariable model to predict DFS. Predictive performance was assessed in relation to discrimination, calibration and net benefit. RESULTS: A total of 728 and 413 patients were included for discovery and validation. Overall, 6.7% and 4.1% of the patients developed recurrences during follow-up. We identified consistent significant effects of PNI and higher preoperative CEA on inferior DFS in both the discovery (PNI: HR = 4.26, 95% CI: 1.70–10.67, p = 0.002; CEA: HR = 1.46, 95% CI: 1.13–1.87, p = 0.003) and the validation analysis (PNI: HR = 3.31, 95% CI: 1.01–10.89, p = 0.049; CEA: HR = 1.58, 95% CI: 1.10–2.28, p = 0.014). They were also significantly associated with recurrence rate. Age at diagnosis was a prominent determinant of OS. A prediction model on DFS using Age at diagnosis, CEA, PNI, and number of LYmph nodes examined (ACEPLY) showed significant discriminative performance (C-index: 0.69, 95% CI:0.60–0.77) in the external validation cohort. Decision curve analysis demonstrated added clinical benefit of applying the model for risk stratification. CONCLUSIONS: PNI and preoperative CEA are useful indicators for inferior survival outcomes of stage I CRC. Identification of stage I patients at high risk of recurrence is feasible using the ACEPLY model, although the predictive performance is yet to be improved. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12916-022-02693-7

    Mapping of Cu and Pb Contaminations in Soil Using Combined Geochemistry, Topography, and Remote Sensing: A Case Study in the Le’an River Floodplain, China

    Get PDF
    Heavy metal pollution in soil is becoming a widely concerning environmental problem in China. The aim of this study is to integrate multiple sources of data, namely total Cu and Pb contents, digital elevation model (DEM) data, remote sensing image and interpreted land-use data, for mapping the spatial distribution of total Cu and Pb contamination in top soil along the Le’an River and its branches. Combined with geographical analyses and watershed delineation, the source and transportation route of pollutants are identified. Regions at high risk of Cu or Pb pollution are suggested. Results reveal that topography is the major factor that controls the spatial distribution of Cu and Pb. Watershed delineation shows evidence that the streamflow resulting from rainfall is the major carrier of metal pollutants

    Review of Fragility Index

    No full text
    This project provides data and code files for the manuscript "Assessing the robustness of results from clinical trials and meta-analyses with the fragility index" by Lifeng Lin, Aiwen Xing, Haitao Chu, M. Hassan Murad, Chang Xu, Benjamin R. Baer, Martin T. Wells, Luis Sanchez-Ramos

    Evaluating the Performance of Sentinel-3A OLCI Land Products for Gross Primary Productivity Estimation Using AmeriFlux Data

    No full text
    Accurate and reliable estimation of gross primary productivity (GPP) is of great significance in monitoring global carbon cycles. The fraction of absorbed photosynthetically active radiation (FAPAR) and vegetation index products of the Moderate Resolution Imaging Spectroradiometer (MODIS) are currently the most widely used data in evaluating GPP. The launch of the Ocean and Land Colour Instrument (OLCI) onboard the Sentinel-3 satellite provides the FAPAR and the OLCI Terrestrial Chlorophyll Index (OTCI) products with higher temporal resolution and smoother spatial distribution than MODIS, having the potential to monitor terrain GPP. OTCI is one of the red-edge indices and is particularly sensitive to canopy chlorophyll content related to GPP. The purpose of the study is to evaluate the performance of OLCI FAPAR and OTCI for the estimation of GPP across seven biomes in 2017–2018. To this end, OLCI FAPAR and OTCI products in combination with insitu meteorological data were first integrated into the MODIS GPP algorithm and in three OTCI-driven models to simulate GPP. The modeled GPP (GPPOLCI-FAPAR and GPPOTCI) were then compared with flux tower GPP (GPPEC) for each site. Furthermore, the GPPOLCI-FAPAR and GPP derived from the MODIS FAPAR (GPPMODIS-FAPAR) were compared. Results showed that the performance of GPPOLCI-FAPAR was varied in different sites, with the highest R2 of 0.76 and lowest R2 of 0.45. The OTCI-driven models that include APAR data exhibited a significant relationship with GPPEC for all sites, and models using only OTCI provided the most varied performance, with the relationship between GPPOTCI and GPPEC from strong to nonsignificant. Moreover, GPPOLCI-FAPAR (R2 = 0.55) performed better than GPPMODIS-FAPAR (R2 = 0.44) across all biomes. These results demonstrate the potential of OLCI FAPAR and OTCI products in GPP estimation, and they also provide the basis for their combination with the soon-to-launch Fluorescence Explorer satellite and their integration with the Sentinel-3 land surface temperature product into light use models for GPP monitoring at regional and global scales

    Quantifying Climate Change and Ecological Responses within the Yangtze River Basin, China

    No full text
    The interactions between climate change and vegetation have a significant impact on the dynamics of the global carbon cycle. Based on the observed meteorological data from 1961 to 2013 and the temperature and precipitation data simulated by various climate models (simulations phase 5 of the Climate Model Intercomparison Project dataset), this paper analyzes the temperature and precipitation changes of the Yangtze River Basin (YRB) and finds that they are a similar trend, that is, the temperature presents a significant upward trend (R2 = 0.49, p < 0.01), and the variation trend of precipitation is not significant (R2 = 0.01). Specifically, based on observed meteorological data, the annual mean temperature increased significantly and the area of increasing temperature accounted for 99.94% of the total region (p < 0.05); however, there was no significant change in annual precipitation. Ecological indicators (normalized difference vegetation index (NDVI); enhanced vegetation index (EVI); leaf area index (LAI); gross primary production (GPP); and net primary production (NPP)) of the YRB showed an increasing trend, and annual NDVI, annual EVI, LAI, annual total GPP and annual total NPP increased at respective rates of 0.002 yr−1, 0.001 yr−1, 0.07 m2m−2decade−1, 9 TgCyr−1yr−1, and 6 TgCyr−1yr−1, respectively. Correlation analysis between temperature/precipitation and NDVI/EVI/LAI/GPP/NPP was used to determine the relationships between climatic parameters and ecological indicators. Specifically, the temperature is significantly positively correlated with annual NDVI (R2 = 0.37, p < 0.05), with annual mean LAI (R2 = 0.35, p < 0.05) and with annual GPP (R2 = 0.37, p < 0.05). In addition, there is a moderate positive correlation between mean EVI and mean growing season air temperature (R2 = 0.24); annual mean air temperature is a moderate positive correlation with annual NPP (R2 = 0.28). Our findings confirm that temperature is more closely related to ecological factors than precipitation over the YRB in these decades

    Evaluation of Various Tree-Based Ensemble Models for Estimating Solar Energy Resource Potential in Different Climatic Zones of China

    No full text
    Solar photovoltaic (PV) electricity generation is growing rapidly in China. Accurate estimation of solar energy resource potential (Rs) is crucial for siting, designing, evaluating and optimizing PV systems. Seven types of tree-based ensemble models, including classification and regression trees (CART), extremely randomized trees (ET), random forest (RF), gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost), gradient boosting with categorical features support (CatBoost) and light gradient boosting method (LightGBM), as well as the multi-layer perceotron (MLP) and support vector machine (SVM), were applied to estimate Rs using a k-fold cross-validation method. The three newly developed models (CatBoost, LighGBM, XGBoost) and GBDT model generally outperformed the other five models with satisfactory accuracy (R2 ranging from 0.893–0.916, RMSE ranging from 1.943–2.195 MJm−2d−1, and MAE ranging from 1.457–1.646 MJm−2d−1 on average) and provided acceptable model stability (increasing the percentage in testing RMSE over training RMSE from 8.3% to 31.9%) under seven input combinations. In addition, the CatBoost (12.3 s), LightGBM (13.9 s), XGBoost (20.5 s) and GBDT (16.8 s) exhibited satisfactory computational efficiency compared with the MLP (132.1 s) and SVM (256.8 s). Comprehensively considering the model accuracy, stability and computational time, the newly developed tree-based models (CatBoost, LighGBM, XGBoost) and commonly used GBDT model were recommended for modeling Rs in contrasting climates of China and possibly similar climatic zones elsewhere around the world. This study evaluated three newly developed tree-based ensemble models of estimating Rs in various climates of China, from model accuracy, model stability and computational efficiency, which provides a new look at indicators of evaluating machine learning methods

    Spatiotemporal Dynamics and Driving Forces of Urban Land-Use Expansion: A Case Study of the Yangtze River Economic Belt, China

    No full text
    It is important to analyze the expansion of an urban area and the factors that drive its expansion. Therefore, this study is based on Defense Meteorological Satellite Program Operational Linescan System (DMSP/OLS) night lighting data, using the landscape index, spatial expansion strength index, compactness index, urban land fractal index, elasticity coefficient, the standard deviation ellipse, spatial correlation analysis, and partial least squares regression to analyze the spatial and temporal evolution of urban land expansion and its driving factors in the Yangtze River Economic Belt (YREB) over a long period of time. The results show the following: Through the calculation of the eight landscape pattern indicators, we found that during the study period, the number of cities and towns and the area of urban built-up areas in the YREB are generally increasing. Furthermore, the variations in these landscape pattern indicators not only show more frequent exchanges and interactions between the cities and towns of the YREB, but also reflect significant instability and irregularity of the urbanization development in the YREB. The spatial expansion intensity indices of 1992–1999, 1999–2006, and 2006–2013 were 0.03, 0.16, and 0.34, respectively. On the whole, the urban compactness of the YREB decreased with time, and the fractal dimension increased slowly with time. Moreover, the long axis and the short axis of the standard deviation ellipse of the YREB underwent a small change during the inspection period. The spatial distribution generally showed the pattern of “southwest-north”. In terms of gravity shift, during the study period, the center of gravity moved from northeast to southwest. In addition, the Moran\u27s I values for the four years of 1992, 1999, 2006, and 2013 were 0.451, 0.495, 0.506, and 0.424, respectively. Furthermore, by using correlation analysis, we find that the correlation coefficients between these four driving indicators and the urban expansion of the YREB were: 0.963, 0.998, 0.990 and 0.994, respectively. Through the use of partial least squares regression, we found that in 1992-2013, the four drivers of urban land expansion in the YREB were ranked as follows: gross domestic product (GDP), total fixed asset investment, urban population, total retail sales of consumer goods

    Improving the Estimation of Daily Aerosol Optical Depth and Aerosol Radiative Effect Using an Optimized Artificial Neural Network

    No full text
    Aerosols can absorb and scatter surface solar radiation (SSR), which is called the aerosol radiative forcing effect (ARF). Great efforts have been made for the estimation of the aerosol optical depth (AOD), SSR and ARF using meteorological measurements and satellite observations. However, the accuracy, and spatial and temporal resolutions of these existing AOD, SSR and ARF models should be improved to meet the application requirements, due to the uncertainties and gaps of input parameters. In this study, an optimized back propagation (BP) artificial neural network (Genetic_BP) was developed for improving the estimation of the AOD values. The retrieved AOD values using the Genetic_BP model and meteorological measurements at China Meteorological Administration (CMA) stations were used to calculate SSR and bottom of the atmosphere (BOA) ARF (ARFB) using Yang’s Hybrid model (YHM). The result show that the Genetic_BP could be used for estimating AOD values with high accuracy (R = 0.866 for CASNET (China Aerosol Remote Sensing Network) stations and R = 0.865 for AERONET (Aerosol Robotic Network) stations). The estimated SSR also showed a good agreement with SSR measurements at 96 CMA radiation stations, with RMSE, MAE, R and R2 of 29.27%, 23.77%, 0.948, and 0.899, respectively. The estimated ARFB values are also highly correlated with the AERONET ARFB ones with RMSE, MAE, R and R2 of −35.47%, −25.33%, 0.843, and 0.711, respectively. Finally, the spatial and temporal variations of AOD, SSR, and ARFB values over Mainland China were investigated. Both AOD and SSR values are generally higher in summer than in other seasons. The ARFB are generally stronger in spring and summer than in other seasons. The ranges for the monthly mean AOD, SSR and ARFB values over Mainland China are 0.183–0.333, 10.218–24.196 MJ m−2day−1 and −2.986 to −1.244 MJ m−2day−1, respectively. The Qinghai-Tibetan Plateau has always been an area with the highest SSR, the lowest AOD and the weakest ARFB. In contrast, the Sichuan Basin has always been an area with low SSR, high AOD, and strong ARFB. The newly proposed AOD model may be of vital importance for improving the accuracy and computational efficiency of AOD, SSR and ARFB estimations for solar energy applications, ecological modeling, and energy policy

    Assessment of Urban Ecosystem Health Based on Entropy Weight Extension Decision Model in Urban Agglomeration

    No full text
    Urban ecosystem health evaluation can assist in sustainable ecological management at a regional level. This study examined urban agglomeration ecosystem health in the middle reaches of the Yangtze River with entropy weight and extension theories. The model overcomes information omissions and subjectivity problems in the evaluation process of urban ecosystem health. Results showed that human capital and education, economic development level as well as urban infrastructure have a significant effect on the health states of urban agglomerations. The health status of the urban agglomeration’s ecosystem was not optimistic in 2013. The majority of the cities were unhealthy or verging on unhealthy, accounting for 64.52% of the total number of cities in the urban agglomeration. The regional differences of the 31 cities’ ecosystem health are significant. The cause originated from an imbalance in economic development and the policy guidance of city development. It is necessary to speed up the integration process to promote coordinated regional development. The present study will aid us in understanding and advancing the health situation of the urban ecosystem in the middle reaches of the Yangtze River and will provide an efficient urban ecosystem health evaluation method that can be used in other areas
    • …
    corecore