38 research outputs found

    Azo Dyes, Their Environmental Effects, and Defining a Strategy for Their Biodegradation and Detoxification

    Get PDF
    Intenzivan industrijski razvoj popraćen je sve većom kompleksnošću sastava otpadnih voda, što u smislu učinkovite zaštite okoliša i održivog razvoja nalaže potrebu pospješivanja kvalitete postojećih te uvođenjem novih postupaka obrade otpadnih voda, kao iznimno važnog čimbenika u interakciji čovjeka i okoliša. Posebnu znanstveno-tehnološku pozornost zahtijevaju novosintetizirani ksenobiotici, poput azo-boja, koji su u prirodi veoma teško razgradivi. Azo-boje podložne su bioakumulaciji, a zbog alergijskih, kancerogenih, mutagenih i teratogenih svojstava nerijetko su prijetnja zdravlju ljudi i očuvanju okoliša. Primjenu fi zikalnokemijskih metoda za uklanjanje azo-boja iz otpadnih voda često ograničavaju visoke cijene, potrebe za odlaganjem nastalog štetnog mulja ili nastanak toksičnih sastojaka razgradnje. Biotehnološki postupci su, zbog mogućnosti ekonomične provedbe i postizanja potpune biorazgradnje, a time i detoksifi kacije, sve zastupljeniji u obradi svih vrsta otpadnih voda, pa tako i onih koje sadržavaju azo-boje.Intense industrial development has been accompanied by the production of wastewaters of very complex content, which pose a serious hazard to the environment, put at risk sustainable development, and call for new treatment technologies that would more effectively address the issue. One particular challenge in terms of science and technology is how to biodegrade xenobiotics such as azo dyes, which practically do not degrade under natural environmental conditions. These compounds tend to bioaccumulate in the environment, and have allergenic, carcinogenic, mutagenic, and teratogenic properties for humans. Removal of azo dyes from effl uents is mostly based on physical-chemical methods. These methods are often very costly and limited, as they accumulate concentrated sludge, which also poses a significant secondary disposal problem, or produce toxic end-products. Biotechnological approach may offer alternative, lowcost biological treatment systems that can completely biodegrade and detoxify even the hard-to-biodegrade azo dyes

    Anaerobic Degradation of Furfural by Defined Mixed Cultures

    No full text

    Citric acid production by Candida strains under intracellular nitrogen limitation

    No full text
    A suitable strain and important factors influencing citric acid formation in yeasts were identified. Candida oleophila ATCC 20177 was chosen as the best citric acid producer from several Candida strains. Yields of 50 g/l citric acid were produced in shake flask and 80 g/l in fed-batch fermentations with 1.5 and 3 g/l NH(4)Cl under non-optimized conditions. Ammonium nitrogen was identified as the limiting substrate for citrate formation. Citric acid excretion begins a few hours after exhaustion of nitrogen in the medium. The importance of intracellular nitrogen limitation was clarified by elemental analysis of C. oleophila biomass. The nitrogen content of C. oleophila biomass decreased from 7.45% during the growth phase to 3.96% in the production phase. The biomass contained less carbon and more trace elements in the growth phase compared with the production phase. Relatively high intracellular NH(4)(+) concentration of about 1.2 mg/g biomass (~37.4 mM) was found during the production phase. The low intracellular nitrogen content and increase of intracellular NH(4)(+) concentration, possibly caused by proteolysis following extracellular nitrogen exhaustion, trigger citric acid production. Intracellular nitrogen limitation and the increase in intracellular NH(4)(+) concentration are the most important factors influencing citric acid formation in yeasts

    Ein "Glasschwamm" als Bakterienspeicher : Abwasserreinigung ohne Sauerstoff

    No full text
    There are a large number of advantages in using microbial anaerobic degradation processes in waste water pretreatment. A disadvantage of this method lies in the relative large doubling times of anaerobic microorganisms. Because of the autocatalytic behaviour of the microbial processes and the low carbon incorporation rate which results in low biomass concentrations in continuously operated systems, decoupling of residence times for substrate and biomass is necessary. In this way high space time yields can be achieved under anaerobic conditions as well. From the well known variants for biomass retention, immobilisation by an inert support isthought to be an effectiv alternative. Experiments on anaerobic treatment of sulfite evaporator condensate by means of immobilized microorganisms were carried out in a 12 l-fixed bed loop reactor. Porous sinter glass from SCHOTT Mainz with a porosity of about 60% and a mean pore diameter of 60-100 μ\mum served as carrier. The reactor was operated for several months under steady state conditions at different residence times using an iterative approach. At a residence time of 12 h 84% of the chemical oxygen demand (COD) was eliminated at loading rates up to 88 kg COD/m3^{3} and day

    Continuous gluconic acid production by isolated yeast-like mould strains of Aureobasidium pullans

    No full text
    By extensive microbial screening, about 50 strains with the ability to secrete gluconic acid were isolated from wild flowers. The strains belong to the yeast-like mould Aureobasidium pullulans (de Bary) Arnaud. In shake flask experiments, gluconic acid concentrations between 23 and 140 g/l were produced within 2 days using a mineral medium. In batch experiments, various important fermentation parameters influencing gluconic acid production by A. pullulans isolate 70 (DSM 7085) were identified. Continuous production of gluconic acid with free-growing cells of the isolated yeast-like microorganisms was studied. About 260 g/l gluconic acid at total glucose conversion could be achieved using continuous stirred tank reactors in defined media with residence times (RT) of about 26 h. The highest space-time-yield of 19.3 g l(-1) x h(-1)) with a gluconic acid concentration of 207.5 g/l was achieved with a RT of 10.8 h. The possibility of gluconic acid production with biomass retention by immobilised cells on porous sinter glass is discussed. The new continuous gluconate fermentation process provides significant advantages over traditional discontinuous operation employing Aspergillus niger. The aim of this work was the development of a continuous fermentation process for the production of gluconic acid. Process control becomes easier, offering constant product quality and quantity
    corecore