7 research outputs found

    Alpha-ring independent assembly of the 20S proteasome

    Get PDF
    Archaeal proteasomes share many features with their eukaryotic counterparts and serve as important models for assembly. Proteasomes are also found in certain bacterial lineages yet their assembly mechanism is thought to be fundamentally different. Here we investigate α-ring formation using recombinant proteasomes from the archaeon Methanococcus maripaludis. Through an engineered disulfide cross-linking strategy, we demonstrate that double α-rings are structurally analogous to half-proteasomes and can form independently of single α-rings. More importantly, via targeted mutagenesis, we show that single α-rings are not required for the efficient assembly of 20S proteasomes. Our data support updating the currently held "α-ring first" view of assembly, initially proposed in studies of archaeal proteasomes, and present a way to reconcile the seemingly separate bacterial assembly mechanism with the rest of the proteasome realm. We suggest that a common assembly network underpins the absolutely conserved architecture of proteasomes across all domains of life

    YPL260W, a high-copy suppressor of a copper-sensitive phenotype in yeast, is linked to DNA repair and proteasome function

    Get PDF
    The ubiquitin–proteasome system directly impacts the metabolism of heavy metals and yeast has become an important model in understanding this interplay. We demonstrate that yeast mutants with defects in proteasome function are able to tolerate elevated levels of copper. In the course of our analysis, we isolate a yeast mutant that not only negates this copper tolerance in proteasome mutants, but renders yeast exquisitely sensitive to this metal. To better understand the nature of the defect, we carry out a plasmid-based genetic screen to identify high-copy suppressors of this strong copper sensitivity. We identify four genes not previously known to be associated with copper metabolism: CDC53, PSP1, YNL200C, and YPL260W. The latter is a highly conserved fungal gene of no known function. Here, we undertake the first characterization of YPL260W. We demonstrate YPL260W to have a role in bleomycin tolerance with links to DNA repair and proteasome function

    Investigating the early events in proteasome assembly

    Get PDF
    Proteasome assembly is a rapid and highly sequential process that occurs through a series of intermediates. While the quest to understand the exact process of assembly is ongoing, there remains an incomplete understanding of what happens early on during the process, prior to the involvement of the β subunits. A significant feature of proteasome assembly is the property of proteasomal subunits to self-assemble. While archaeal α and β subunits from Thermoplasma acidophilum can assemble into entire 20S units in vitro, certain α subunits from divergent species have a property to self-assemble into single and double heptameric rings. In this study, we have shown that recombinant α subunits from Methanococcus maripaludis also have a tendency to self-assemble into higher order structures when expressed in E. coli. Using a novel cross-linking strategy, we were able to establish that these higher order structures were double α rings that are structurally similar to a half-proteasome (i.e. an α-β ring pair). Our experiments on M. maripaludis α subunits represent the first biochemical evidence for the orientation of rings in an α ring dimer. We also investigated self-assembly of α subunits in S. cerevisiae and attempted to characterize a highly stable and unique high molecular weight complex (HMWC) that is formed upon co-expression of α5, α6, α7 and α1 in E. coli. Using our cross-linking strategy, we were able to show that this complex is a double α ring in which, at the least, one α1 subunit is positioned across itself. We were also able to detect α1-α1 crosslinks in high molecular weight complexes that are formed when α7 and α1 are co-expressed, and when α6, α7 and α1 are co-expressed in E. coli. The fact that we able to observe α1-α1 crosslinks in higher order structures that form whenever α7 and α1 were present suggests that α1-α1 crosslinks might be able to serve as potential trackers to detect HMWCs in vivo. This would be an important step in determining if these HMWCs represent bona fide assembly intermediates, or dead-end complexes whose formation must be prevented in order to ensure efficient proteasome assembly

    Comprehensive analyses of genomes, transcriptomes and metabolites of neem tree

    No full text
    Neem (Azadirachta indica A. Juss) is one of the most versatile tropical evergreen tree species known in India since the Vedic period (1500 BC–600 BC). Neem tree is a rich source of limonoids, having a wide spectrum of activity against insect pests and microbial pathogens. Complex tetranortriterpenoids such as azadirachtin, salanin and nimbin are the major active principles isolated from neem seed. Absolutely nothing is known about the biochemical pathways of these metabolites in neem tree. To identify genes and pathways in neem, we sequenced neem genomes and transcriptomes using next generation sequencing technologies. Assembly of Illumina and 454 sequencing reads resulted in 267 Mb, which accounts for 70% of estimated size of neem genome. We predicted 44,495 genes in the neem genome, of which 32,278 genes were expressed in neem tissues. Neem genome consists about 32.5% (87 Mb) of repetitive DNA elements. Neem tree is phylogenetically related to citrus, Citrus sinensis. Comparative analysis anchored 62% (161 Mb) of assembled neem genomic contigs onto citrus chromomes. Ultrahigh performance liquid chromatography-mass spectrometry-selected reaction monitoring (UHPLC-MS/SRM) method was used to quantify azadirachtin, nimbin, and salanin from neem tissues. Weighted Correlation Network Analysis (WCGNA) of expressed genes and metabolites resulted in identification of possible candidate genes involved in azadirachtin biosynthesis pathway. This study provides genomic, transcriptomic and quantity of top three neem metabolites resource, which will accelerate basic research in neem to understand biochemical pathways

    Aberrant Inclusion of a Poison Exon Causes Dravet Syndrome and Related SCN1A-Associated Genetic Epilepsies

    No full text
    Developmental and epileptic encephalopathies (DEEs) are a group of severe epilepsies characterized by refractory seizures and developmental impairment. Sequencing approaches have identified causal genetic variants in only about 50% of individuals with DEEs.1-3 This suggests that unknown genetic etiologies exist, potentially in the ∼98% of human genomes not covered by exome sequencing (ES). Here we describe seven likely pathogenic variants in regions outside of the annotated coding exons of the most frequently implicated epilepsy gene, SCN1A, encoding the alpha-1 sodium channel subunit. We provide evidence that five of these variants promote inclusion of a "poison" exon that leads to reduced amounts of full-length SCN1A protein. This mechanism is likely to be broadly relevant to human disease; transcriptome studies have revealed hundreds of poison exons,4,5 including some present within genes encoding other sodium channels and in genes involved in neurodevelopment more broadly.6 Future research on the mechanisms that govern neuronal-specific splicing behavior might allow researchers to co-opt this system for RNA therapeutics.status: publishe
    corecore