1,284 research outputs found

    AGN accretion and black hole growth across compact and extended galaxy evolution phases

    Get PDF
    The extent of black hole growth during different galaxy evolution phases and the connection between galaxy compactness and AGN activity remain poorly understood. We use Hubble Space Telescope imaging of the CANDELS fields to identify star-forming and quiescent galaxies at z=0.5-3 in both compact and extended phases and use Chandra X-ray imaging to measure the distribution of AGN accretion rates and track black hole growth within these galaxies. Accounting for the impact of AGN light changes ~20% of the X-ray sources from compact to extended galaxy classifications. We find that ~10-25% of compact star-forming galaxies host an AGN, a mild enhancement (by a factor ~2) compared to extended star-forming galaxies or compact quiescent galaxies of equivalent stellar mass and redshift. However, AGN are not ubiquitous in compact star-forming galaxies and this is not the evolutionary phase, given its relatively short timescale, where the bulk of black hole mass growth takes place. Conversely, we measure the highest AGN fractions (~10-30%) within the relatively rare population of extended quiescent galaxies. For massive galaxies that quench at early cosmic epochs, substantial black hole growth in this extended phase is crucial to produce the elevated black hole mass-to-galaxy stellar mass scaling relation observed for quiescent galaxies at z~0. We also show that AGN fraction increases with compactness in star-forming galaxies and decreases in quiescent galaxies within both the compact and extended sub-populations, demonstrating that AGN activity depends closely on the structural properties of galaxies.Comment: 29 pages, 18 figures, submitted to MNRAS. Primary results are shown in Fig 7 and summarised by Fig 12. See Fig 16 and 17 for key interpretation/conclusion

    The X-ray luminosity function of AGN at z~3

    Full text link
    We combine Lyman-break colour selection with ultradeep (> 200 ks) Chandra X-ray imaging over a survey area of ~0.35 deg^2 to select high redshift AGN. Applying careful corrections for both the optical and X-ray selection functions, the data allow us to make the most accurate determination to date of the faint end of the X-ray luminosity function (XLF) at z~3. Our methodology recovers a number density of X-ray sources at this redshift which is at least as high as previous surveys, demonstrating that it is an effective way of selecting high z AGN. Comparing to results at z=1, we find no evidence that the faint slope of the XLF flattens at high z, but we do find significant (factor ~3.6) negative evolution of the space density of low luminosity AGN. Combining with bright end data from very wide surveys we also see marginal evidence for continued positive evolution of the characteristic break luminosity L*. Our data therefore support models of luminosity-dependent density evolution between z=1 and z=3. A sharp upturn in the the XLF is seen at the very lowest luminosities (Lx < 10^42.5 erg s^-1), most likely due to the contribution of pure X-ray starburst galaxies at very faint fluxes.Comment: 16 pages, 9 figures, accepted for publication in MNRA

    Investigating evidence for different black hole accretion modes since redshift z~1

    Get PDF
    Chandra data in the COSMOS, AEGIS-XD and 4Ms CDFS are combined with optical/near-IR photometry to determine the rest-frame U-V vs V-J colours of X-ray AGN hosts at mean redshifts 0.40 and 0.85. This combination of colours (UVJ) provides an efficient means of separating quiescent from star-forming, including dust reddened, galaxies. Morphological information emphasises differences between AGN split by their UVJ colours. AGN in quiescent galaxies are dominated by spheroids, while star-forming hosts are split between bulges and disks. The UVJ diagram of AGN hosts is then used to set limits on the accretion density associated with evolved and star-forming systems. Most of the black hole growth since z~1 is associated with star-forming hosts. Nevertheless, ~15-20% of the X-ray luminosity density since z~1, is taking place in the quiescent region of the UVJ diagram. For the z~0.40 subsample, there is tentative evidence (2sigma significance), that AGN split by their UVJ colours differ in Eddington ratio. AGN in star-forming hosts dominate at high Eddington ratios, while AGN in quiescent hosts become increasingly important as a fraction of the total population toward low Eddington ratios. At higher redshift, z~0.8, such differences are significant at the 2sigma level only at Eddington ratios >1e-3. These findings are consistent with scenarios in which diverse accretion modes are responsible for the build-up of SMBHs at the centres of galaxies. We compare our results with the GALFORM semi-analytic model, which postulates two black hole fuelling modes, the first linked to star-formation and the second occuring in passive galaxies. GALFORM predicts a larger fraction of black hole growth in quiescent galaxies at z<1, compared to the data. Relaxing the strong assumption of the model that passive AGN hosts have zero star-formation rate could reconcile this disagreement.Comment: MNRAS accepte

    Snake venom NAD glycohydrolases: primary structures, genomic location, and gene structure

    Get PDF
    NAD glycohydrolase (EC 3.2.2.5) (NADase) sequences have been identified in 10 elapid and crotalid venom gland transcriptomes, eight of which are complete. These sequences show very high homology, but elapid and crotalid sequences also display consistent differences. As in Aplysia kurodai ADP-ribosyl cyclase and vertebrate CD38 genes, snake venom NADase genes comprise eight exons; however, in the Protobothrops mucrosquamatus genome, the sixth exon is sometimes not transcribed, yielding a shortened NADase mRNA that encodes all six disulfide bonds, but an active site that lacks the catalytic glutamate residue. The function of this shortened protein, if expressed, is unknown. While many vertebrate CD38s are multifunctional, liberating both ADP-ribose and small quantities of cyclic ADP-ribose (cADPR), snake venom CD38 homologs are dedicated NADases. They possess the invariant TLEDTL sequence (residues 144–149) that bounds the active site and the catalytic residue, Glu228. In addition, they possess a disulfide bond (Cys121–Cys202) that specifically prevents ADP-ribosyl cyclase activity in combination with Ile224, in lieu of phenylalanine, which is requisite for ADPR cyclases. In concert with venom phosphodiesterase and 5â€Č-nucleotidase and their ecto-enzyme homologs in prey tissues, snake venom NADases comprise part of an envenomation strategy to liberate purine nucleosides, and particularly adenosine, in the prey, promoting prey immobilization via hypotension and paralysis

    X-ray Surface Brightness Profiles of Active Galactic Nuclei in the Extended Groth Strip: Implications for AGN Feedback

    Full text link
    Using data from the All Wavelength Extended Groth Strip International Survey (AEGIS) we statistically detect the extended X-ray emission in the interstellar medium (ISM)/intra-cluster medium (ICM) in both active and normal galaxies at 0.3 <= z <= 1.3. For both active galactic nuclei (AGN) host galaxy and normal galaxy samples that are matched in restframe color, luminosity, and redshift distribution, we tentatively detect excess X-ray emission at scales of 1--10 arcsec at a few sigma significance in the surface brightness profiles. The exact significance of this detection is sensitive to the true characterization of Chandra's point spread function. The observed excess in the surface brightness profiles is suggestive of lower extended emission in AGN hosts compared to normal galaxies. This is qualitatively similar to theoretical predictions of the X-ray surface brightness profile from AGN feedback models, where feedback from AGN is likely to evacuate the gas from the center of the galaxy/cluster. We propose that AGN that are intrinsically under-luminous in X-rays, but have equivalent bolometric luminosities to our sources will be the ideal sample to study more robustly the effect of AGN feedback on diffuse ISM/ICM gas.Comment: Accepted in PAS

    The X-ray luminosity function of Active Galactic Nuclei in the redshift interval z=3-5

    Full text link
    We combine deep X-ray survey data from the Chandra observatory and the wide-area/shallow XMM-XXL field to estimate the AGN X-ray luminosity function in the redshift range z=3-5. The sample consists of nearly 340 sources with either photometric (212) or spectroscopic (128) redshift in the above range. The combination of deep and shallow survey fields provides a luminosity baseline of three orders of magnitude, Lx(2-10keV)~1e43-1e46erg/s at z>3. We follow a Bayesian approach to determine the binned AGN space density and explore their evolution in a model-independent way. Our methodology accounts for Poisson errors in the determination of X-ray fluxes and uncertainties in photometric redshift estimates. We demonstrate that the latter is essential for unbiased measurement of space densities. We find that the AGN X-ray luminosity function evolves strongly between the redshift intervals z=3-4 and z=4-5. There is also suggestive evidence that the amplitude of this evolution is luminosity dependent. The space density of AGN with Lx<1e45erg/s drops by a factor of 5 between the redshift intervals above, while the evolution of brighter AGN appears to be milder. Comparison of our X-ray luminosity function with that of UV/optical selected QSOs at similar redshifts shows broad agreement at bright luminosities, Lx>1e45erg/s. The faint-end slope of UV/optical luminosity functions however, is steeper than for X-ray selected AGN. This implies that the type-I AGN fraction increases with decreasing luminosity at z>3, opposite to trends established at lower redshift. We also assess the significance of AGN in keeping the hydrogen ionised at high redshift. Our X-ray luminosity function yields ionising photon rate densities that are insufficient to keep the Universe ionised at redshift z>4. A source of uncertainty in this calculation is the escape fraction of UV photons for X-ray selected AGN.Comment: MNRAS accepte

    The Nustar Extragalactic Surveys: Initial Results and Catalog from the Extended Chandra Deep Field South

    Get PDF
    We present initial results and the source catalog from the NuSTAR survey of the Extended Chandra Deep Field South (hereafter, ECDFS) - currently the deepest contiguous component of the NuSTAR extragalactic survey program. The survey covers the full ~30 arcmin x 30 arcmin area of this field to a maximum depth of ~360 ks (~220 ks when corrected for vignetting at 3-24 keV), reaching sensitivity limits of ~1.3 x 10^-14 erg/cm2/s (3-8 keV), ~3.4 x 10^-14 erg/cm2/s (8-24 keV) and ~3.0 x 10^-14 erg/cm2/s (3-24 keV). Fifty four (54) sources are detected over the full field, although five of these are found to lie below our significance threshold once contaminating flux from neighboring (i.e., blended) sources is taken into account. Of the remaining 49 that are significant, 19 are detected in the 8-24 keV band. The 8-24 keV to 3-8 keV band ratios of the twelve sources that are detected in both bands span the range 0.39-1.7, corresponding to a photon index range of Gamma ~ 0.5-2.3, with a median photon index of 1.70 +/- 0.52. The redshifts of the 49 sources in our main sample span the range z = 0.21-2.7, and their rest-frame 10-40 keV luminosities (derived from the observed 8-24 keV fluxes) span the range L(10-40 keV) ~ (0.7-300) x 10^43 erg/s, sampling below the knee of the X-ray luminosity function out to z ~ 0.8-1. Finally, we identify one NuSTAR source that has neither a Chandra nor an XMM-Newton counterpart, but that shows evidence of nuclear activity at infrared wavelengths, and thus may represent a genuine, new X-ray source detected by NuSTAR in the ECDFS

    The<i> Nustar </i>Extragalactic Surveys: The Number Counts of Active Galactic Nuclei and the Resolved Fraction of the Cosmic X-Ray Background

    Get PDF
    We present the 3–8 keV and 8–24 keV number counts of active galactic nuclei (AGNs) identified in the NuclearSpectroscopic Telescope Array (NuSTAR) extragalactic surveys. NuSTAR has now resolved 33%–39% of the X-raybackground in the 8–24 keV band, directly identifying AGNs with obscuring columns up to ~1025 cm-2. In the softer 3–8 keV band the number counts are in general agreement with those measured by XMM-Newton and Chandra over the flux range 5 x 10-15 ≀ S(3–8 keV)/erg s-1 cm-2 ≀10-12 probed by NuSTAR. In the hard 8–24 keV band NuSTAR probes fluxes over the range 2 x 10-14 ≀ S(8–24 keV)/erg s-1 cm-2 ≀ 10-12, a factor ∌100 fainter than previous measurements. The 8–24 keV number counts match predictions from AGN populationsynthesis models, directly confirming the existence of a population of obscured and/or hard X-ray sources inferredfrom the shape of the integrated cosmic X-ray background. The measured NuSTAR counts lie significantly abovesimple extrapolation with a Euclidian slope to low flux of the Swift/BAT 15–55 keV number counts measured at higher fluxes (S(15–55 keV) ≀ 10−11 erg s-1 cm-2), reflecting the evolution of the AGN population between the Swift/BAT local (z &lt; 0.1) sample and NuSTAR’s z ~ 1 sample. CXB synthesis models, which account for AGNevolution, lie above the Swift/BAT measurements, suggesting that they do not fully capture the evolution of obscured AGNs at low redshifts

    Concentration Dependence of Superconductivity and Order-Disorder Transition in the Hexagonal Rubidium Tungsten Bronze RbxWO3. Interfacial and bulk properties

    Full text link
    We revisited the problem of the stability of the superconducting state in RbxWO3 and identified the main causes of the contradictory data previously published. We have shown that the ordering of the Rb vacancies in the nonstoichiometric compounds have a major detrimental effect on the superconducting temperature Tc.The order-disorder transition is first order only near x = 0.25, where it cannot be quenched effectively and Tc is reduced below 1K. We found that the high Tc's which were sometimes deduced from resistivity measurements, and attributed to compounds with .25 < x < .30, are to be ascribed to interfacial superconductivity which generates spectacular non-linear effects. We also clarified the effect of acid etching and set more precisely the low-rubidium-content boundary of the hexagonal phase.This work makes clear that Tc would increase continuously (from 2 K to 5.5 K) as we approach this boundary (x = 0.20), if no ordering would take place - as its is approximately the case in CsxWO3. This behaviour is reminiscent of the tetragonal tungsten bronze NaxWO3 and asks the same question : what mechanism is responsible for this large increase of Tc despite the considerable associated reduction of the electron density of state ? By reviewing the other available data on these bronzes we conclude that the theoretical models which are able to answer this question are probably those where the instability of the lattice plays a major role and, particularly, the model which call upon local structural excitations (LSE), associated with the missing alkali atoms.Comment: To be published in Physical Review
    • 

    corecore