124 research outputs found

    Brain TSPO-PET predicts later disease progression independent of relapses in multiple sclerosis

    Get PDF
    Overactivation of microglia is associated with most neurodegenerative diseases. In this study we examined whether PET-measurable innate immune cell activation predicts multiple sclerosis disease progression. Activation of microglia/macrophages was measured using the 18-kDa translocator protein (TSPO)-binding radioligand 11C-PK11195 and PET imaging in 69 patients with multiple sclerosis and 18 age- and sex-matched healthy controls. Radioligand binding was evaluated as the distribution volume ratio from dynamic PET images. Conventional MRI and disability measurements using the Expanded Disability Status Scale were performed for patients at baseline and 4.1 ± 1.9 (mean ± standard deviation) years later. Fifty-one (74%) of the patients were free of relapses during the follow-up period. Patients had increased activation of innate immune cells in the normal-appearing white matter and in the thalamus compared to the healthy control group (P = 0.033 and P = 0.003, respectively, Wilcoxon). Forward-type stepwise logistic regression was used to assess the best variables predicting disease progression. Baseline innate immune cell activation in the normal-appearing white matter was a significant predictor of later progression when the entire multiple sclerosis cohort was assessed [odds ratio (OR) = 4.26; P = 0.048]. In the patient subgroup free of relapses there was an association between macrophage/microglia activation in the perilesional normal-appearing white matter and disease progression (OR = 4.57; P = 0.013). None of the conventional MRI parameters measured at baseline associated with later progression. Our results strongly suggest that innate immune cell activation contributes to the diffuse neural damage leading to multiple sclerosis disease progression independent of relapses

    Natalizumab treatment reduces microglial activation in the white matter of the MS brain

    Get PDF
    ObjectiveTo evaluate whether natalizumab treatment reduces microglial activation in MS.MethodsWe measured microglial activation using the 18-kDa translocator protein (TSPO)-binding radioligand [C-11] PK11195 and PET imaging in 10 patients with MS before and after 1 year treatment with natalizumab. Microglial activation was evaluated as the distribution volume ratio (DVR) of the specifically bound radioligand in brain white and gray matter regions of interest. MRI and disability measurements were performed for comparison. Evaluation was performed identically with 11 age-and sex-matched patients with MS who had no MS therapy.ResultsNatalizumab treatment reduced microglial activation in the normal-appearing white matter (NAWM; baseline DVR vs DVR after 1 year of treatment 1.25 vs 1.22, p = 0.014, Wilcoxon) and at the rim of chronic lesions (baseline DVR vs DVR after 1 year of treatment 1.24 vs 1.18, p = 0.014). In patients with MS with no treatment, there was an increase in microglial activation at the rim of chronic lesions (1.23 vs 1.27, p = 0.045). No alteration was observed in microglial activation in gray matter areas. In the untreated patient group, higher microglial activation at baseline was associated with more rapid disability progression during an average of 4 years of follow-up.ConclusionsTSPO-PET imaging can be used as a tool to assess longitudinal changes in microglial activation in the NAWM and in the perilesional areas in the MS brain in vivo. Natalizumab treatment reduces the diffuse compartmentalized CNS inflammation related to brain resident innate immune cells

    Cessation of anti-VLA-4 therapy in a focal rat model of multiple sclerosis causes an increase in neuroinflammation

    Get PDF
    BackgroundPositron emission tomography (PET) can be used for in vivo evaluation of the pathology associated with multiple sclerosis. We investigated the use of longitudinal PET imaging and the 18-kDa translocator protein (TSPO) binding radioligand [F-18]GE-180 to detect changes in a chronic multiple sclerosis-like focal delayed-type hypersensitivity experimental autoimmune encephalomyelitis (fDTH-EAE) rat model during and after anti-VLA-4 monoclonal antibody (mAb) treatment. Thirty days after lesion activation, fDTH-EAE rats were treated with the anti-VLA-4 mAb (n=4) or a control mAb (n=4; 5mg/kg, every third day, subcutaneously) for 31days. Animals were imaged with [F-18]GE-180 on days 30, 44, 65, 86 and 142. Another group of animals (n=4) was used for visualisation the microglia with Iba-1 at day 44 after a 2-week treatment period.ResultsAfter a 2-week treatment period on day 44, there was a declining trend (p=0.067) in [F-18]GE-180-binding in the anti-VLA-4 mAb-treated animals versus controls. However, cessation of treatment for 4days after a 31-day treatment period increased [F-18]GE-180 binding in animals treated with anti-VLA-4 mAb compared to the control group (p=0.0003). There was no difference between the groups in TSPO binding by day 142.ConclusionsThese results demonstrated that cessation of anti-VLA-4 mAb treatment for 4days caused a transient rebound increase in neuroinflammation. This highlights the usefulness of serial TSPO imaging in the fDTH-EAE model to better understand the rebound phenomenon

    Microglial activation, white matter tract damage, and disability in MS

    Get PDF
    ObjectiveTo investigate the relationship of in vivo microglial activation to clinical and MRI parameters in MS.MethodsPatients with secondary progressive MS (n = 10) or relapsing-remitting MS (n = 10) and age-matched healthy controls (n = 17) were studied. Microglial activation was measured using PET and radioligand [C-11](R)-PK11195. Clinical assessment and structural and quantitative MRI including diffusion tensor imaging (DTI) were performed for comparison.Results[C-11](R)-PK11195 binding was significantly higher in the normal-appearing white matter (NAWM) of patients with secondary progressive vs relapsing MS and healthy controls, in the thalami of patients with secondary progressive MS vs controls, and in the perilesional area among the progressive compared with relapsing patients. Higher binding in the NAWM was associated with higher clinical disability and reduced white matter (WM) structural integrity, as shown by lower fractional anisotropy, higher mean diffusivity, and increased WM lesion load. Increasing age contributed to higher microglial activation in the NAWM among patients with MS but not in healthy controls.ConclusionsPET can be used to quantitate microglial activation, which associates with MS progression. This study demonstrates that increased microglial activity in the NAWM correlates closely with impaired WM structural integrity and thus offers one rational pathologic correlate to diffusion tensor imaging (DTI) parameters

    Infection with Possible Novel Parapoxvirus in Horse, Finland, 2013

    Get PDF
    A horse in Finland exhibited generalized granulomatous inflammation and severe proliferative dermatitis. After euthanization, we detected poxvirus DNA from a skin lesion sample. The virus sequence grouped with parapoxviruses, closely resembling a novel poxvirus detected in humans in the United States after horse contact. Our findings indicate horses may be a reservoir for zoonotic parapoxvirus.Peer reviewe

    Infection with possible novel parapoxvirus in horse, Finland, 2013

    Get PDF
    A horse in Finland exhibited generalized granulomatous inflammation and severe proliferative dermatitis. After euthanization, we detected poxvirus DNA from a skin lesion sample. The virus sequence grouped with parapoxviruses, closely resembling a novel poxvirus detected in humans in the United States after horse contact. Our findings indicate horses may be a reservoir for zoonotic parapoxvirus.</p

    Pregnancy in multiple sclerosis: clinical and self-report scales

    Get PDF
    Relapse rate is decreased during pregnancy in multiple sclerosis (MS). Risk for postpartum relapse is increased in the first 3 months after delivery. We aimed to study clinical course of MS around pregnancy, using clinical as well as self-report scales, including data on quality of life (QoL), and to identify clinical factors predisposing for postpartum relapse. We performed a prospective, longitudinal study among 35 MS patients and 20 controls. In patients we assessed expanded disability status scale (EDSS), the Guy’s neurological disability scale (GNDS) and the multiple sclerosis impact scale 29 (MSIS-29). In patients and controls we assessed the MOS 36 item short form health survey questionnaire (SF36), consisting of eight domains. The previously described surge in relapses after delivery was also obvious in this study (p = 0.005). At group level EDSS and MSIS-29 did not show overt fluctuations over time. The GNDS, however, improved during the third trimester, compared to the first trimester (p = 0.003). A concomitant improvement in the SF36 domains vitality (p < 0.001) and general health (p = 0.001) was found in patients. At the final visit, at least 9 months after delivery, no worsening of EDSS, GNDS, MSIS-29 or SF36 was observed compared with the (for MS, beneficial) third trimester. Duration of disease, relapses in the year preceding pregnancy or relapses during pregnancy were not associated with postpartum relapse. QoL is improved during pregnancy. Although relapse rate was increased directly after delivery, in the mid long term after delivery no adverse effects of pregnancy on MS were found

    Vascular adhesion protein-1 is actively involved in the development of inflammatory lesions in rat models of multiple sclerosis

    Get PDF
    Background: Vascular adhesion protein-1 (VAP-1) is an inflammation-inducible endothelial cell molecule and primary amine oxidase that mediates leukocyte entry to sites of inflammation. However, there is limited knowledge of the inflammation-related expression of VAP-1 in the central nervous system (CNS). Therefore, we investigated the expression of VAP-1 within the CNS vasculature in two focal rat models of experimental autoimmune encephalomyelitis (EAE) mimicking multiple sclerosis (MS).Methods: EAE was induced either with Bacillus Calmette-Guerin, resulting in a delayed-type hypersensitivity-like pathogenesis (fDTH-EAE), or with myelin oligodendrocyte glycoprotein (fMOG-EAE). A subgroup of fMOG-EAE rats were treated daily with a selective VAP-1 inhibitor (LJP1586; 5 mg/kg). On 3 and 14 days after lesion activation, rat brains were assessed using magnetic resonance imaging (MRI), and ex vivo autoradiography was conducted to evaluate the binding of Gallium-68-labelled VAP-1 ligand. Histology and immunohistochemistry (OX-42, VAP-1, intercellular adhesion protein-1 [ICAM-1], P-selectin) supported the ex vivo autoradiography.Results: EAE lesions showed MRI-detectable signal changes and binding of the VAP-1-targeting radiotracer in both rat models. Some of the VAP-1 positive vessels showed morphological features typical for high endothelial-like venules at sites of inflammation. Inhibition of VAP-1 activity with small molecule inhibitor, LJP1586, decreased lymphocyte density in the acute inflammatory phase of fMOG-EAE lesions (day 3, P = 0.026 vs. untreated), but not in the remission phase (day 14, P = 0.70 vs. untreated), and had no effect on the amount of OX-42-positive cells in either phase. LJP1586 treatment reduced VAP-1 and ICAM-1 expression in the acute inflammatory phase, whereas P-selectin remained not detectable at all studied stages of the disease.Conclusions: Our results revealed that VAP-1 is expressed and functionally active in vasculature within the induced focal EAE lesions during the acute phase of inflammation and remains expressed after the acute inflammation has subsided. The study indicates that VAP-1 is actively involved in the development of inflammatory CNS lesions. During this process, the endothelial cell lesion-related vasculature seem to undergo a structural transformation from regular flat-walled endothelium to HEV-like endothelium

    Lymphocyte Subsets Show Different Response Patterns to In Vivo Bound Natalizumab—A Flow Cytometric Study on Patients with Multiple Sclerosis

    Get PDF
    Natalizumab is an effective monoclonal antibody therapy for the treatment of relapsing- remitting multiple sclerosis (RRMS) and interferes with immune cell migration into the central nervous system by blocking the α4 subunit of very-late activation antigen-4 (VLA-4). Although well tolerated and very effective, some patients still suffer from relapses in spite of natalizumab therapy or from unwanted side effects like progressive multifocal leukoencephalopathy (PML). In search of a routine-qualified biomarker on the effectiveness of natalizumab therapy we applied flow cytometry and analyzed natalizumab binding to α4 and α4 integrin surface levels on T-cells, B-cells, natural killer (NK) cells, and NKT cells from 26 RRMS patients under up to 72 weeks of therapy. Four-weekly infusions of natalizumab resulted in a significant and sustained increase of lymphocyte-bound natalizumab (p<0.001) which was paralleled by a significant decrease in detectability of the α4 integrin subunit on all lymphocyte subsets (p<0.001). We observed pronounced natalizumab accumulations on T and B cells at single measurements in all patients who reported clinical disease activity (n = 4). The natalizumab binding capacity of in vitro saturated lymphocytes collected during therapy was strongly diminished compared to treatment-naive cells indicating a therapy-induced reduction of α4. Summing up, this pilot study shows that flow cytometry is a useful method to monitor natalizumab binding to lymphocytes from RRMS patients under therapy. Investigating natalizumab binding provides an opportunity to evaluate the molecular level of effectiveness of natalizumab therapy in individual patients. In combination with natalizumab saturation experiments, it possibly even provides a means of studying the feasability of patient-tailored infusion intervals. A routine-qualified biomarker on the basis of individual natalizumab saturation on lymphocyte subsets might be an effective tool to improve treatment safety
    • …
    corecore