1,123 research outputs found

    Linking Theory to Practice in the Workplace

    Get PDF
    No abstract available

    A new concept of a hybrid trapped field magnet lens

    Get PDF
    In this paper, a new concept of a hybrid trapped field magnet lens (HTFML) is proposed. The HTMFL exploits the “vortex pinning effect” of an outer superconducting bulk cylinder, which is magnetized as a trapped field magnet (TFM) using field-cooled magnetization (FCM), and the “diamagnetic shielding effect” of an inner bulk magnetic lens to generate a concentrated magnetic field higher than the trapped field from the TFM in the bore of the magnetic lens. This requires that, during the FCM process, the outer cylinder is in the normal state (T > superconducting transition temperature, Tc) and the inner lens is in the superconducting state (T < Tc) when the external magnetizing field is applied, followed by cooling to an appropriate operating temperature, then removing the external field. This is explored for two potential cases: 1) exploiting the difference in Tc of two different bulk materials (“case-1”), e.g. MgB2 (Tc = 39 K) and GdBaCuO (Tc = 92 K) or 2) using the same material for the whole HTFML, e.g., GdBaCuO, but utilizing individually-controlled cryostats, the same cryostat with different cooling loops or coolants, or heaters that keep the outer bulk cylinder at a temperature above Tc to achieve the same desired effect. The HTFML is verified using numerical simulations for “case-1” using an MgB2 cylinder and GdBaCuO lens pair and for “case-2” using a GdBaCuO cylinder and GdBaCuO lens pair. As a result, the HTFML could reliably generate a concentrated magnetic field Bc = 4.73 T with the external magnetizing field Bapp = 3 T in the “case-1, and a higher Bc = 13.49 T with higher Bapp = 10 T in the “case-2,” respectively. This could, for example, be used to enhance the magnetic field in the bore of a bulk superconducting NMR/MRI system to improve its resolution

    Fast and efficient critical state modelling of field-cooled bulk high-temperature superconductors using a backward computation method

    Get PDF
    Abstract: A backward computation method has been developed to accelerate modelling of the critical state magnetization current in a staggered-array bulk high-temperature superconducting (HTS) undulator. The key concept is as follows: (i) a large magnetization current is first generated on the surface of the HTS bulks after rapid field-cooling (FC) magnetization; (ii) the magnetization current then relaxes inwards step-by-step obeying the critical state model; (iii) after tens of backward iterations the magnetization current reaches a steady state. The simulation results show excellent agreement with the H -formulation method for both the electromagnetic and electromagnetic-mechanical coupled analyses, but with significantly faster computation speed. The simulation results using the backward computation method are further validated by the recent experimental results of a five-period Gd–Ba–Cu–O (GdBCO) bulk undulator. Solving the finite element analysis (FEA) model with 1.8 million degrees of freedom (DOFs), the backward computation method takes less than 1.4 h, an order of magnitude or higher faster than other state-of-the-art numerical methods. Finally, the models are used to investigate the influence of the mechanical stress on the distribution of the critical state magnetization current and the undulator field along the central axis
    corecore